Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (10): 103-123    DOI: 10.11925/infotech.2096-3467.2021.0029
Current Issue | Archive | Adv Search |
Topic Evolution of Online Reviews for Crowdfunding Campaigns
Wang Wei1,Gao Ning1,Xu Yuting1,Wang Hongwei2()
1Business School, Huaqiao University, Quanzhou 362021, China
2School of Economics and Management, Tongji University, Shanghai 200092, China
Download: PDF (1927 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper reveals the change of uers’ interests in the crowdfunding projects and analyzes the dynamic evolution of their online comments on these projects. [Methods] First, we retrieved 497,936 online comments on 6,537 technology-related projects from Kickstarter as corpus. Then, with the help of LDA model, we analyzed the topic evolution of these comments. Finally, we obtained the dynamic evolution model of the topics with the help of cosine similarity. [Results] In the initial stage of financing, the comments were mainly on basic project information. Then, the comments focused on return of investments and product information. In the final stage, these comments were on the shipping issues. For successful projects, the topics developed from project description to waiting time for products and deliveries. For the failed projects, the comments gradually evolved into the possible relaunch and prospect of a new project. [Limitations] We did not distinguish the project categories, which need to be analyzed in the future. This paper only examined the reward based crowdfunding model, which also needs to be expanded. [Conclusions] This article analyzes reviews of online crowdfunding projects and expands the application of LDA in the field of crowdfunding, which provides practical suggestion for platforms, project sponsors and investors.

Key wordsCrowdfunding      Online Reviews      LDA      Topic Evolution      Topic Strength     
Received: 10 January 2021      Published: 23 November 2021
ZTFLH:  TP182  
Fund:National Natural Science Foundation of China(72072062);National Natural Science Foundation of China(71771177);Natural Science Foundation of Fujian Province(2020J01782)
Corresponding Authors: Wang Hongwei,ORCID:0000-0003-0814-3498     E-mail: hwwang@tongji.edu.cn

Cite this article:

Wang Wei, Gao Ning, Xu Yuting, Wang Hongwei. Topic Evolution of Online Reviews for Crowdfunding Campaigns. Data Analysis and Knowledge Discovery, 2021, 5(10): 103-123.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2021.0029     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2021/V5/I10/103

文献 主要研究结论 研究评述
Korfiatis等[34] 以主题模型获取关键信息,为了解客户满意度和随后的服务质量提供了基础 没有考虑时间因素,得到的结论无时间变化
Rossetti等[35] 探讨了主题模型在餐厅评论中的应用,提出一种多维度主题模型 只考虑了评论文本的静态主题识别,没有将时间因素考虑进去
Hu等[15] 用结构主题模型分析方法,对酒店评论进行分析,揭示了10个主题
分析消费者对每个主题的态度
考虑了情感因素,得到正面和负面主题
没有将时间变化反应到模型中
Saura等[36] 使用LDA主题模型分析Twitter上创业有关的推文,确定主题并进行情感分析
得到可持续创业的关键影响因素
确定了影响创业成功的因素,但是其参与方的关系不同于众筹创业
未考虑时间因素对于模型的影响
舒文琛等[37] 采用主题模型分析情报学领域的研究现状和预测未来发展趋势 采用的语料为中文文献标题、摘要和关键字
考虑了时间因素并按年份划分时间窗口
Yin等[38] 将动态主题模型应用于与COVID-19相关的新浪微博评论 对社交媒体平台的热点评论进行分析
COVID-19语料与在线融资领域存在较大差异
李慧等[21] 以文档、文档情感分布和词项为变量,提出DTSM模型,得到情感主题分布 将采集的评论数据集按时间片进行建模
没有考虑主题之间的关联关系
关鹏等[39] 结合LDA与生命周期理论进行建模
解决了主题过滤、主题语义相似度计算问题
主题过滤规则需要专家经验,不适合众筹领域
由于阈值差异,可能出现多个主题关联演化
Main Research Progress Related to This Study
Research Framework of the Study
Topic Evolution Analysis Framework
Topic State Evolution Relationship
类别 项目数量/个 总评论数量/条 平均评论数量/条
融资成功 4 306 486 117 112.89
融资失败 2 231 11 819 5.29
总计 6 537 497 936 76.17
Statistics Results
Types of Projects
用户评论 评论主题 时间窗口
Time for an update? 询问何时有
项目更新
前期/
中期
PS. they were actually not friendly at all in their messages. I will post the emails that were sending me responses 与邮件沟通
联系有关
初期/
结束后
How are things going? Are you any closer to shipment? 与发货、物流有关 末期/
结束后
I’ve received one of the bags I ordered. And still waiting for the other one. Please check if it’s on it’s way. Thanks. 与产品是否
到货相关
结束后
So the Battery and the cable came. 陈述产品的
电池已到达
结束后
User Reviews Example
Diagram of Observe Window
The Perplexity of Project Reviews Varies with the Number of Topics
时间窗口 融资成功项目主题数量 融资失败项目主题数量
总文本集 9 9
初期 7 8
中期 10 10
末期 10 9
融资结束后 9 10
The Optimal Number of Topics in Each Observe Window
关键词 评论 内容
short, time What happened? How did you go from \$1,040 to \$7,400 in such a short time? 为什么在如此短的时间增加了融资金额
time, long @Taegoo, Thanks for your comment. You made a good point. Our time line seems too long, but it proves we have experiences in this area. 我们的时间线太长了
time, short Wonder what time of plan B, because time is running short 14 days or less 因为时间不多了,只有14天或更少
running out, time It looks as if we are running out of time on this project. Unfortunately we will not be able to ship if we are unsuccessful. 在这个项目上的时间不多了
10%, time 30% funded after 10% of the campaign time. Seems promising :) 在10%的活动时间后获得30%的资金
time, remaining I love this product and have shared it with many. Hopefully it will take off with the time remaining and we can meet the campaign goal. Good Luck! 希望它能在剩余的时间里起飞
more, time This needs more publicity and more time to get funds raised. 需要更多宣传和时间
time, up Thanks for your comments! I was trying to expose this but time was up. Anyway I will make some 时间到了
Reviews Text Content (Example of Financing Time )
项目类别 主题 特征词
融资成功 Topic0(邮件联系) email, send, survey, address, message, contact, reply
Topic1(发货跟踪) tracking, shipping, received, backer, delivery, days, week
Topic2(项目更新) updates, team, good, update, really, news, forward
Topic3(平台体验) Kickstarter, terms, connection, rights, community, invoke, safe
Topic4(退款) product, project, refund, like, money, people, campaign
Topic5(产品到货) received, mine, backer, wait, arrived, yesterday, excited
Topic6(项目支持) support, pledge, option, amazon, request, goal, feature
Topic7(融资期限) support, time, item, like, issues, mark, add
Topic8(移动端支持) app, phone, device, battery, power, USB, charge
融资失败 Topic0(移动端支持) phone, battery, USB, Bluetooth, device, version, app
Topic1(项目支持) video, backers, support, check, share, hot, twitter
Topic2(重新启动) good, luck, project, really, idea, relaunch, hope
Topic3(相关问题) questions, product, shipping, media, buy, campaign, really
Topic4(项目前景) project, hope, support, product, pledge, goal, backers
Topic5(融资目标) goal, project, reach, hope, cool, support, funding
Topic6(创业者信息) creator, idea, like, project, love, product, super
Topic7(创意评价) product, campaign, good, idea, like, nice, plan
Topic8(评论沟通) comment, update, funded, awesome, updates, removed, future
Reviews Total Text Topic Extraction Results
Project Comment Topic Presentation
时间窗口 融资成功项目评论主题 融资失败项目评论主题
融资初期 Topic0:项目目标;Topic1:项目评论;Topic2:项目支持;Topic3:产品特征;Topic4:项目基本信息;Topic5:项目团队;Topic6:运输 Topic0:项目承诺;Topic1:项目基本信息;Topic2:项目创意;Topic3:项目回报;Topic4:融资目标;Topic5:相关问题;Topic6:运输;Topic7:产品应用
融资中期 Topic0:项目承诺;Topic1:项目支持;Topic2:运输;Topic3:app;Topic4:项目支持者;Topic5:相关问题; Topic6:USB&蓝牙; Topic7:盒子&尺寸; Topic8:项目创意; Topic9:防水测试 Topic0:运输;Topic1:项目回报;Topic2:项目支持;Topic3:项目创意;Topic4:项目评价;Topic5:产品问题;Topic6:产品评价;Topic7:版本精度;Topic8:资金募集;Topic9:产品设计
融资末期 Topic0:项目团队;Topic1:项目基本信息;Topic2:USB充电;Topic3:融资目标;Topic4:庆祝成功;Topic5:app;Topic6:电池&太阳能;Topic7:软件兼容;Topic8:运输;Topic9:无线蓝牙 Topic0:项目支持者;Topic1:运输;Topic2:质量问题;Topic3:项目承诺;Topic4:项目支持;Topic5:手机蓝牙; Topic6:创意评价; Topic7:项目团队; Topic8:希望
融资结束后 Topic0:退款;Topic1:等待产品;Topic2:电池&USB;Topic3:app&蓝牙;Topic4:产品等待时间;Topic5:项目更新;Topic6:系统&数据;Topic7:键盘&视频;Topic8:发货追踪 Topic0:项目支持者;Topic1:运输;Topic2:产品评价;Topic3:资金募集;Topic4:项目前景;Topic5:项目更新;Topic6:重新启动;Topic7:项目团队;Topic8:项目市场;Topic9:未来重启
The Results of Topic Evolution
Trend of Comments on the Strength of the Investor-Related Topic Evolution
Trend of Comments on the Strength of the Information-Related Topic Evolution
Topic Evolution Process of the Successful Funded Project Reviews
Topic Evolution Process of the Failed Funded Project Reviews
时间窗口 评论实例 关键内容 主题类别
融资初期 Can It use osc(open sound control) via Wi-Fi? 开放声音控制 产品特征
I have bought the starter kit. 已经买了 项目支持
融资中期 Hi there,I love what you are working on! From the purpose to the design, there is so much potential.
One of the stop motion shots I'm working on now (and for a while) involves a delay so a sheet of plastic can stabilize between frames. Wpuld it be it possible with RGKit Play to automate that delay? Or is there a way to synchronize but dissonate two motor actions?
喜欢你的工作
很大的潜力
项目创意
The shelves that attach to the yellow arms and the yellow arms are definitely of interest. Basically gear that can be modified to length and attach to your motors to help move products. My concern is having motors that I end up having to build new gear for all the time for different uses. 架子、黄色扶手、
齿轮、长度、马达
产品特征
融资末期 Would it be possible to buy camera slide as an add-on 可能购买 项目支持
Content creator kit is no longer available. I’m unable to edit my reward. 我的回报 项目回报
融资结束后 Hi creators, is there any nee with regard shipment and customs specially for UK? It is very important to know what we are expecting in terms of time and cost. Thanks 运输和海关 运输
I've been rewatching your videos on instagram and i really can't wait to get my RGKit Play !!! Good luck with the production guys. 真的等不及 等待产品
Example of the Topic Evolution Process of the Funded Project Reviews
问题 一致性
无线蓝牙 »»»» app&蓝牙 81.25%
运输 »»»» 运输 80.73%
项目创意 »»»» 庆祝成功 80.21%
融资希望 »»»» 未来重启、项目前景 79.69%、74.48%
产品应用 »»»» 产品设计 79.69%
Actual Survey Results
Product Feature Topic Evolution Path
Project Reward Topic Evolution Path
Analysis Process and Theoretical Innovation Diagram
[1] Büschken J, Allenby G M. Sentence-Based Text Analysis for Customer Reviews[J]. Marketing Science, 2016, 35(6): 953-975.
doi: 10.1287/mksc.2016.0993
[2] 蒋翠清, 吕孝忠, 段锐. 基于主题模型的产品在线论坛主题演化分析[J]. 系统工程学报, 2019, 34(5): 598-609.
[2] (Jiang Cuiqing, Lv Xiaozhong, Duan Rui. Analyzing Topic Evolution of Online Product Forum Based on Topic Model[J]. Journal of Systems Engineering, 2019, 34(5): 598-609.)
[3] Usman S M, Bukhari F A S, Usman M, et al. Does the Role of Media and Founder’s Past Success Mitigate the Problem of Information Asymmetry? Evidence from a UK Crowdfunding Platform[J]. Sustainability, 2019, 11(3): 692.
doi: 10.3390/su11030692
[4] Brem A, Bilgram V, Marchuk A. How Crowdfunding Platforms Change the Nature of User Innovation: From Problem Solving to Entrepreneurship[J]. Technological Forecasting and Social Change, 2019, 144: 348-360.
doi: 10.1016/j.techfore.2017.11.020
[5] Cumming D J, Johan S A, Zhang Y L. The Role of Due Diligence in Crowdfunding Platforms[J]. Journal of Banking & Finance, 2019, 108: 105661.
doi: 10.1016/j.jbankfin.2019.105661
[6] Cox J, Nguyen T. Does the Crowd Mean Business? An Analysis of Rewards-Based Crowdfunding as a Source of Finance for Start-ups and Small Businesses[J]. Journal of Small Business and Enterprise Development, 2018, 25(1): 147-162.
doi: 10.1108/JSBED-05-2017-0165
[7] 沈卓, 李艳. 基于PreLM-FT细粒度情感分析的餐饮业用户评论挖掘[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[7] (Shen Zhuo, Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. Data Analysis and Knowledge Discovery, 2020, 4(4): 63-71.)
[8] 刘倩, 李晨亮. 基于社交媒体的话题演变研究综述[J]. 数据分析与知识发现, 2020, 4(8): 1-14.
[8] (Liu Qian, Li Chenliang. A Survey of Topic Evolution on Social Media[J]. Data Analysis and Knowledge Discovery, 2020, 4(8): 1-14.)
[9] 王珠美, 胡彦蓉, 刘洪久. 基于LDA主题模型和直觉模糊TOPSIS的农产品在线评论情感分析[J]. 数据采集与处理, 2020, 35(5): 965-977.
[9] (Wang Zhumei, Hu Yanrong, Liu Hongjiu. Emotional Analysis of Agricultural Product Online Reviews Based on LDA Thematic Model and Intuitionistic Fuzzy TOPSIS[J]. Journal of Data Acquisition and Processing, 2020, 35(5): 965-977.)
[10] 王伟, 陈伟, 祝效国, 等. 众筹融资成功率与语言风格的说服性: 基于Kickstarter的实证研究[J]. 管理世界, 2016(5): 81-98.
[10] (Wang Wei, Chen Wei, Zhu Xiaoguo, et al. Success Rate of Crowdfunding and Persuasion of Language Style: An Empirical Study Based on Kickstarter[J]. Management World, 2016(5): 81-98.)
[11] 王伟, 何翎, Kevin Zhu, 等. 更新信号的阶段性融资效应:基于众筹市场的跨类别实证研究[J]. 中国管理科学, 2020, 28(11): 155-166.
[11] (Wang Wei, He Ling, Kevin Zhu, et al. The Periodic Impact of Linguistic Cues to Update Signalson Successful Crowdfunding Campaigns Among Categories[J]. Chinese Journal of Management Science, 2020, 28(11): 155-166.)
[12] Wang Y L, Kim K, Lee B, et al. Word Clustering Based on POS Feature for Efficient Twitter Sentiment Analysis[J]. Human-Centric Computing and Information Sciences, 2018, 8(1): 1-25.
doi: 10.1186/s13673-017-0124-3
[13] 史达, 王乐乐, 衣博文. 在线评论有用性的深度数据挖掘: 基于TripAdvisor的酒店评论数据[J]. 南开管理评论, 2020, 23(5): 64-75.
[13] (Shi Da, Wang Lele, Yi Bowen. Deep Data Mining for Online Reviews Usefulness: Hotel Reviews Data on TripAdvisor[J]. NanKai Business Review, 2020, 23(5): 64-75.)
[14] Yang B, Liu Y, Liang Y, et al. Exploiting User Experience from Online Customer Reviews for Product Design[J]. International Journal of Information Management, 2019, 46: 173-186.
doi: 10.1016/j.ijinfomgt.2018.12.006
[15] Hu N, Zhang T, Gao B J, et al. What do Hotel Customers Complain About? Text Analysis Using Structural Topic Model[J]. Tourism Management, 2019, 72: 417-426.
doi: 10.1016/j.tourman.2019.01.002
[16] Shafqat W, Byun Y. Identifying Topics: Analysis of Crowdfunding Comments in Scam Campaigns [C]//Proceedings of International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. 2018: 137-148.
[17] 徐红姣, 曾文, 张运良. 基于Word2Vec的论文和专利主题关联演化分析方法研究[J]. 情报杂志, 2018, 37(12): 36-42.
[17] (Xu Hongjiao, Zeng Wen, Zhang Yunliang. Paper-Patent Topic Linkage Evolution Analysis Method Based on Word2Vec[J]. Journal of Intelligence, 2018, 37(12): 36-42.)
[18] 张宝建, 李鹏利, 陈劲, 等. 国家科技创新政策的主题分析与演化过程: 基于文本挖掘的视角[J]. 科学学与科学技术管理, 2019, 40(11): 15-31.
[18] (Zhang Baojian, Li Pengli, Chen Jin, et al. Thematic Analysis and Evolution Process of National Science and Technology Innovation Policy: Based on the Perspective of Text Mining[J]. Science of Science and Management of S.&T., 2019, 40(11): 15-31.)
[19] 王扶东, 王苑潼. 基于LDA模型的国内“一带一路”文献主题研究[J]. 情报探索, 2019(11): 129-134.
[19] (Wang Fudong, Wang Yuantong. Subject Analysis of Researches on the Belt and Road in China Based on LDA Model[J]. Information Research, 2019 (11): 129-134.)
[20] 朱晓霞, 宋嘉欣, 孟建芳. 基于动态主题-情感演化模型的网络舆情信息分析[J]. 情报科学, 2019, 37(7): 72-78.
[20] (Zhu Xiaoxia, Song Jiaxin, Meng Jianfang. Analysis of Online Public Opinion Information Based on the Dynamic Theme-Emotion Evolution Model[J]. Information Science, 2019, 37(7): 72-78.)
[21] 李慧, 胡云凤. 基于动态情感主题模型的在线评论分析[J]. 数据分析与知识发现, 2017, 1(9): 74-82.
[21] (Li Hui, Hu Yunfeng. Analyzing Online Reviews with Dynamic Sentiment Topic Model[J]. Data Analysis and Knowledge Discovery, 2017, 1(9): 74-82.)
[22] Glynn C, Tokdar S T, Howard B, et al. Bayesian Analysis of Dynamic Linear Topic Models[J]. Bayesian Analysis, 2019, 14(1): 53-80.
[23] 段尧清, 尚婷, 周密. 我国政务大数据政策扩散特征与主题分析[J]. 图书情报工作, 2020, 64(13): 133-139.
[23] (Duan Yaoqing, Shang Ting, Zhou Mi. Analysis on the Characteristics and Subjects of China’s Government Big Data Policy Diffusion[J]. Library and Information Service, 2020, 64(13): 133-139.)
[24] Lehečka J, Pražák A. Online LDA-Based Language Model Adaptation [C]//Proceedings of International Conference on Text, Speech, and Dialogue. 2018: 334-341.
[25] Yao F, Wang Y. Tracking Urban Geo-topics Based on Dynamic Topic Model[J]. Computers, Environment and Urban Systems, 2020, 79: 101419.
doi: 10.1016/j.compenvurbsys.2019.101419
[26] Wang X R, McCallum A. Topics over Time: A Non-Markov Continuous-Time Model of Topical Trends [C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2006: 424-433.
[27] 林丽丽, 马秀峰. 基于LDA模型的国内图书情报学研究主题发现及演化分析[J]. 情报科学, 2019, 37(12): 87-92.
[27] (Lin Lili, Ma Xiufeng. The Theme Discovery and Evolution Analysis of Domestic Library and Information Science Research Based on LDA[J]. Information Science, 2019, 37(12): 87-92.)
[28] 曲佳彬, 欧石燕. 基于主题过滤与主题关联的学科主题演化分析[J]. 数据分析与知识发现, 2018, 2(1): 64-75.
[28] (Qu Jiabin, Ou Shiyan. Analyzing Topic Evolution with Topic Filtering and Relevance[J]. Data Analysis and Knowledge Discovery, 2018, 2(1): 64-75.)
[29] Blei D M, Lafferty J D. Dynamic Topic Models [C]//Proceedings of the 23rd International Conference on Machine Learning. 2006: 113-120.
[30] 楚克明, 李芳. 基于LDA模型的新闻话题的演化[J]. 计算机应用与软件, 2011, 28(4): 4-7, 26.
[30] (Chu Keming, Li Fang. LDA Model-based News Topic Evolution[J]. Computer Applications and Software, 2011, 28(4): 4-7, 26.)
[31] 胡吉明, 陈果. 基于动态LDA主题模型的内容主题挖掘与演化[J]. 图书情报工作, 2014, 58(2): 138-142.
[31] (Hu Jiming, Chen Guo. Mining and Evolution of Content Topics Based on Dynamic LDA[J]. Library and Information Service, 2014, 58(2): 138-142.)
[32] Lv N, Luo J Y, Liu Y, et al. Analysis of Topic Evolution Based on Subtopic Similarity [C]//Proceedings of 2009 International Conference on Computational Intelligence and Natural Computing. 2009: 506-509.
[33] 秦晓慧, 乐小虬. 基于LDA主题关联过滤的领域主题演化研究[J]. 现代图书情报技术, 2015(3): 18-25.
[33] (Qin Xiaohui, Le Xiaoqiu. Topic Evolution Research on a Certain Field Based on LDA Topic Association Filter[J]. New Technology of Library and Information Service, 2015(3): 18-25.)
[34] Korfiatis N, Stamolampros P, Kourouthanassis P, et al. Measuring Service Quality from Unstructured Data: A Topic Modeling Application on Airline Passengers’ Online Reviews[J]. Expert Systems with Applications, 2019, 116: 472-486.
doi: 10.1016/j.eswa.2018.09.037
[35] Rossetti M, Stella F, Zanker M. Analyzing User Reviews in Tourism with Topic Models[J]. Information Technology & Tourism, 2016, 16(1): 5-21.
[36] Saura J R, Palos-Sanchez P, Grilo A. Detecting Indicators for Startup Business Success: Sentiment Analysis Using Text Data Mining[J]. Sustainability, 2019, 11(3): 917.
doi: 10.3390/su11030917
[37] 舒文琛, 周恩国, 李岱峰, 等. 基于合著网络社区发现的情报学研究主题演化分析[J]. 情报科学, 2020, 38(1): 75-81.
[37] (Shu Wenchen, Zhou Enguo, Li Daifeng, et al. An Analysis of the Evolution of Informatics Research Themes Based on Co-authored Network Community Discovery[J]. Information Science, 2020, 38(1): 75-81.)
[38] Yin F L, Lv J H, Zhang X J, et al. COVID-19 Information Propagation Dynamics in the Chinese Sina-Microblog[J]. Mathematical Biosciences Engineering, 2020, 17(3): 2676-2692.
doi: 10.3934/mbe.2020146
[39] 关鹏, 王曰芬, 傅柱. 基于LDA的主题语义演化分析方法研究: 以锂离子电池领域为例[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[39] (Guan Peng, Wang Yuefen, Fu Zhu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. Data Analysis and Knowledge Discovery, 2019, 3(7): 61-72.)
[40] Huang L, Ma J Y, Chen C L. Topic Detection from Microblogs Using T-LDA and Perplexity [C]//Proceedings of the 24th Asia-Pacific Software Engineering Conference Workshops. 2017: 71-77.
[41] 李湘东, 张娇, 袁满. 基于LDA模型的科技期刊主题演化研究[J]. 情报杂志, 2014, 33(7): 115-121.
[41] (Li Xiangdong, Zhang Jiao, Yuan Man. On Topic Evolution of a Scientific Journal Based on LDA Model[J]. Journal of Intelligence, 2014, 33(7): 115-121.)
[42] Sung H Y, Yeh H Y, Lin J K, et al. A Visualization Tool of Patent Topic Evolution Using a Growing Cell Structure Neural Network[J]. Scientometrics, 2017, 111(3): 1267-1285.
doi: 10.1007/s11192-017-2361-7
[43] 陈挺, 王海名, 王小梅. 基于可视化的基金资助热点及其演化发现方法研究[J]. 数据分析与知识发现, 2020, 4(2/3): 60-67.
[43] (Chen Ting, Wang Haiming, Wang Xiaomei. Detecting Funding Topics Evolutions with Visualization[J]. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 60-67.)
[44] 茅利锋. 基于主题模型的主题演化分析及预测[D]. 南京: 南京邮电大学, 2016.
[44] (Mao Lifeng. Study of Text Evolution Analysis and Prediction Based on Topic Model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016.)
[45] Wang W, Chen W, Zhu K, et al. Emphasizing the Entrepreneur or the Idea? The Impact of Text Content Emphasis on Investment Decisions in Crowdfunding[J]. Decision Support Systems, 2020, 136: 113341.
doi: 10.1016/j.dss.2020.113341
[46] 林杰, 苗润生. 专业社交媒体中的主题图谱构建方法研究: 以汽车论坛为例[J]. 情报学报, 2020, 39(1): 68-80.
[46] (Lin Jie, Miao Runsheng. A Method for Constructing Topic Map in Professional Social Media: A Case Study of Automobile Forum[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(1): 68-80.)
[47] Rogers E M. Diffusion of Innovations[M]. Simon and Schuster, 2010.
[48] Buskens V. Spreading Information and Developing Trust in Social Networks to Accelerate Diffusion of Innovations[J]. Trends in Food Science & Technology, 2020, 106: 485-488.
[49] Josefy M, Dean T J, Albert L S, et al. The Role of Community in Crowdfunding Success: Evidence on Cultural Attributes in Funding Campaigns to “Save the Local Theater”[J]. Entrepreneurship Theory and Practice, 2017, 41(2): 161-182.
doi: 10.1111/etap.12263
[1] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[2] Chen Jun,Liang Hao,Qian Chen. Studying Investment Decisions of Rewarded Crowdfunding Users with Emotional Distance and Text Analysis[J]. 数据分析与知识发现, 2021, 5(4): 60-71.
[3] Yi Huifang,Liu Xiwen. Analyzing Patent Technology Topics with IPC Context-Enhanced Context-LDA Model[J]. 数据分析与知识发现, 2021, 5(4): 25-36.
[4] Wang Hongbin,Wang Jianxiong,Zhang Yafei,Yang Heng. Topic Recognition of News Reports with Imbalanced Contents[J]. 数据分析与知识发现, 2021, 5(3): 109-120.
[5] Shen Si,Li Qinyu,Ye Yuan,Sun Hao,Ye Wenhao. Topic Mining and Evolution Analysis of Medical Sci-Tech Reports with TWE Model[J]. 数据分析与知识发现, 2021, 5(3): 35-44.
[6] Liu Qian, Li Chenliang. A Survey of Topic Evolution on Social Media[J]. 数据分析与知识发现, 2020, 4(8): 1-14.
[7] Yue Lixin,Liu Ziqiang,Hu Zhengyin. Evolution Analysis of Hot Topics with Trend-Prediction[J]. 数据分析与知识发现, 2020, 4(6): 22-34.
[8] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[9] Ye Guanghui,Zeng Jieyan,Hu Jinglan,Bi Chongwu. Analyzing Public Sentiments from the Perspective of City Profiles[J]. 数据分析与知识发现, 2020, 4(4): 15-26.
[10] Pan Youneng,Ni Xiuli. Recommending Online Medical Experts with Labeled-LDA Model[J]. 数据分析与知识发现, 2020, 4(4): 34-43.
[11] Liu Yuwen,Wang Kai. Finding Geographic Locations of Popular Online Topics[J]. 数据分析与知识发现, 2020, 4(2/3): 173-181.
[12] Huang Wei,Zhao Jiangyuan,Yan Lu. Empirical Research on Topic Drift Index for Trending Network Events[J]. 数据分析与知识发现, 2020, 4(11): 92-101.
[13] Ye Guanghui,Xu Tong,Bi Chongwu,Li Xinyue. Analyzing Evolution of City Tourism Portraits with Multi-Dimensional Features and LDA Model[J]. 数据分析与知识发现, 2020, 4(11): 121-130.
[14] Wang Xiwei,Zhang Liu,Huang Bo,Wei Ya’nan. Constructing Topic Graph for Weibo Users Based on LDA: Case Study of “Egypt Air Disaster”[J]. 数据分析与知识发现, 2020, 4(10): 47-57.
[15] Manyu Huang,Qi Yun,Hufeng Peng,Xuemeng Dou. Analyzing Textual Features of Excess-funded Agricultural Products——Case Study of Crowdfunding Website[J]. 数据分析与知识发现, 2019, 3(9): 124-134.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn