Please wait a minute...
New Technology of Library and Information Service  2002, Vol. 18 Issue (4): 76-77    DOI: 10.11925/infotech.1003-3513.2002.04.27
Current Issue | Archive | Adv Search |
On the Information Retrieval Education of University  Users under Network Situation
Song Yunlong   Wang Zhenyun
(The Library of Shandong University, Weihai 264209,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

The rapid development of modern information technology has brought a fast increase in network information .This causes great impact on traditional index retrieval classes in universities .How to develop network information resources fully under the network situation is a important subject in present university information retrieval education classes .This article presents several answers and suggestions.

Key wordsNetwork      Information retrieval      Users in universities     
Received: 12 April 2002      Published: 25 August 2002


Corresponding Authors: Song Yunlong,Wang Zhenyun   
About author:: Song Yunlong,Wang Zhenyun

Cite this article:

Song Yunlong,Wang Zhenyun. On the Information Retrieval Education of University  Users under Network Situation. New Technology of Library and Information Service, 2002, 18(4): 76-77.

URL:     OR

[1] 徐文敏,束春德,孙先方.论文献检索课与网络利用教育的关系.图书馆工作与研究,1999,(1)
[2] 邓荣先.现代检索技术环境下高校文献检索课的教学与组织.图书馆学刊,2000,(1)
[3] 李冠强.网络信息获取技能培训.山东图书馆季刊,2001,(1)
[4] 李爱红.网络信息检索研究的发展趋势.图书情报工作,1999,(5)

[1] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[2] Sheng Jiaqi, Xu Xin. Expanding Scholar Labels with Research Similarity and Co-authorship Network[J]. 数据分析与知识发现, 2020, 4(8): 75-85.
[3] Qiu Erli,He Hongwei,Yi Chengqi,Li Huiying. Research on Public Policy Support Based on Character-level CNN Technology[J]. 数据分析与知识发现, 2020, 4(7): 28-37.
[4] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[5] Liu Weijiang,Wei Hai,Yun Tianhe. Evaluation Model for Customer Credits Based on Convolutional Neural Network[J]. 数据分析与知识发现, 2020, 4(6): 80-90.
[6] Wang Mo,Cui Yunpeng,Chen Li,Li Huan. A Deep Learning-based Method of Argumentative Zoning for Research Articles[J]. 数据分析与知识发现, 2020, 4(6): 60-68.
[7] Li Wenzheng,Gu Yijun,Yan Hongli. Predicting Community Numbers with Network Bayesian Information Criterion[J]. 数据分析与知识发现, 2020, 4(4): 72-82.
[8] Yan Chun,Liu Lu. Classifying Non-life Insurance Customers Based on Improved SOM and RFM Models[J]. 数据分析与知识发现, 2020, 4(4): 83-90.
[9] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[10] Liu Yuwen,Wang Kai. Finding Geographic Locations of Popular Online Topics[J]. 数据分析与知识发现, 2020, 4(2/3): 173-181.
[11] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[12] Xu Jianmin,Zhang Liqing,Wang Miao. Tracking Static Topics with Bayesian Network[J]. 数据分析与知识发现, 2020, 4(2/3): 200-206.
[13] Xiang Fei,Xie Yaotan. Recognition Model of Patient Reviews Based on Mixed Sampling and Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[14] Yu Chuanming,Zhong Yunci,Lin Aochen,An Lu. Author Name Disambiguation with Network Embedding[J]. 数据分析与知识发现, 2020, 4(2/3): 48-59.
[15] Ni Weijian,Guo Haoyu,Liu Tong,Zeng Qingtian. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938