Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (3): 37-42    DOI: 10.11925/infotech.1003-3513.2005.03.09
Current Issue | Archive | Adv Search |
Study on Intelligent Retrieval System Model
Kong Jing1,2
1 (Library of Chinese Academy of Sciences, Beijing 100080, China)
2 (Graduate School of the Chinese Academy of Sciences, Beijing 100039, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

This paper proposes a formal framework model for the intelligent information retrieval. It outlines the typical modeling method, knowledge representation and retrieval algorithm for instantiation of the given formal framework. It provides the statistic analysis of the modeling framework, knowledge representation and retrieval algorithm for 30 intelligent retrieval systems. It summarizes three kinds of solutions for instantiation of the formal intelligent retrieval model.

Key wordsIntelligent retrieval      Modeling method      Knowledge representation      Retrieval algorithm     
Received: 28 October 2004      Published: 25 March 2005


Corresponding Authors: Kong Jing     E-mail:
About author:: Kong Jing

Cite this article:

Kong Jing. Study on Intelligent Retrieval System Model. New Technology of Library and Information Service, 2005, 21(3): 37-42.

URL:     OR

1高济,朱淼良,何钦铭. 人工智能基础. 北京:高等教育出版社,2002:8
2Croft W B. Approaches to intelligent information retrieval.Information Processing & Management, 1987,23(4): 249-254
3Brajnik G, Guida G, Tasso C. User modeling in intelligent information retrieval. Information Processing & Management, 1987, 23(4) : 305-320
4Bruandet M. Outline of a knowledge-base model for an intelligent information retrieval system. Information Processing & Management, 1989, 25(1): 89-115
5Cortez E M, Park S C, Kim S. The hybrid application of an inductive learning method and a neural network for intelligent information retrieval.Information Processing & Management, 1995, 31(6): 789-813
6Mejasson P, et al. Intelligent design assistant (IDA): a case base reasoning system for material and design. Materials & Design, 2001, 22(3): 163-170
7Setchi R, Tang Q, Cheng L. Information Retrieval Using Deep Natural Language Processing. In: Palade V, Howlett R.J, Jain L C, ed. KES 2003, LNAI 2773. Berlin Heidelberg: Springer-Verlag, 2003, 879-885
8Lee C, Chen Y. An embedded visual programming interface for intelligent information retrieval on the Web.In: Knowledge and Data Engineering Exchange Workshop, 1997. Proceedings. 1997 : 46-53
9Machiraju C, Kanda S, Dasigi V. Application of Intelligent Information Retrieval Techniques to a Television Similar Program Guide. In: Orchard R et al. ed. IEA/AIE 2004, LNAI 3029. Berlin Heidelberg: Springer-Verlag, 2004: 788-796
10ali J, et al. ICBR-Multimedia Management System for Intelligent Content Based Retrieval. In: Enser P et al. ed. CIVR 2004, LNCS 3115. Berlin Heidelberg: Springer-Verlag 2004: 601-609
11Gasteratos A, Zafeiridis P, Andreadis I. An Intelligent System for Aerial Image Retrieval and Classification. In: Vouros G A, Panayiotopoulos T, ed. SETN 2004, LNAI 3025. Berlin Heidelberg: Springer-Verlag, 2004: 63-71
12Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: ACM Press, 1999:23
13Griffith J, O'Riordan C. A Formal Framework for Combining Evidence in an Information Retrieval Domain. In: Palade V, Howlett R J, Jain L C, ed. KES 2003, LNAI 2773/2003. Berlin: Springer-Verlag. 2003: 864-871
14van Rijsbergen C J. A non-classical logic for information retrieval. The Computer Journal, 1986, 29(6): 481-485
15Sparck Jones K. Intelligent retrieval. In: Jones, K P, ed. Intelligent Information Retrieval: Proceedings of Informatics 7. London: ASLIB, 1983:136-142
16Brasethvik T, Gulla J A. Natural Language Analysis for Semantic Document Modeling. M. In : Bouzeghoub Z, Kedad E, Métais Eds. NLDB 2000, LNCS 1959/2001. Berlin, Heidelberg: Springer-Verlag, 2001 : 127-139
17He Y, Hui S. Mining a Web Citation Database for author co-citation analysis. Information Processing and Management, 2002, 38 : 491-508
18Zhu T, Greiner R, Haubl G. Learning a Model of aWeb User's Interests. In: Brusilovsky P, et al. Eds. UM 2003, LNAI 2702. Berlin, Heidelberg: Springer-Verlag, 2003: 65-75
19徐振宁,张维明,陈文伟. 基于Ontology的智能信息检索. 计算机科学, 2001, 28(6): 21-26, 44
20Tawil A-R, Behrendt W. Requirements for components of an intelligent information retrieval model for the WWW. In: Intelligent World Wide Web Agents (Digest No: 1997/118), IEE Colloquium on, 17 March 1997:1-7
21Turtle H R. Inference Networks for Document Retrieval. UMI, 1991
22Tu H, Hsiang J. An architecture and category knowledge for intelligent information retrieval agents. Decision Support Systems, 2000, 28(3): 255-268
23Montani S, Bellazzi R. Integrating case based and rule based reasoning in a decision support system: evaluation with simulated patients. In: Proceedings of the 1999 AMIA Annual Symposium. Philadelphia: Hanley and Belfus, Inc. 1999 : 887-891

[1] Yu Chuanming, Wang Manyi, Lin Hongjun, Zhu Xingyu, Huang Tingting, An Lu. A Comparative Study of Word Representation Models Based on Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[2] Yu Chuanming,Yuan Sai,Zhu Xingyu,Lin Hongjun,Zhang Puliang,An Lu. Research on Deep Learning Based Topic Representation of Hot Events[J]. 数据分析与知识发现, 2020, 4(4): 1-14.
[3] Chuanming Yu,Haonan Li,Manyi Wang,Tingting Huang,Lu An. Knowledge Representation Based on Deep Learning:Network Perspective[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
[4] Ma Xukai, Ding Shengchun. Research on Intelligent Retrieval of Complex Product Design Knowledge[J]. 现代图书情报技术, 2014, 30(9): 44-50.
[5] Hu Zhengyin, Fang Shu. Review on Text-based Patent Technology Mining[J]. 现代图书情报技术, 2014, 30(6): 62-70.
[6] Chen Ying, Li Jiao, Li Junlian. A Knowledge Representation Method for Pharmaceutical Products in China[J]. 现代图书情报技术, 2013, (6): 9-15.
[7] Nie Hui. Combining Logical Inference with Content-based Computing for Intelligent Retrieval in Academical Networks[J]. 现代图书情报技术, 2013, 29(1): 22-29.
[8] Bai Haiyan, Wang Li, Liang Bing. UMLS and Its Application in Field of Intelligent Retrieval[J]. 现代图书情报技术, 2012, 28(4): 1-9.
[9] Dong Hui Xu Lei. Knowledge Representation in History Field Expert System Application Based on Ontology[J]. 现代图书情报技术, 2010, 26(7/8): 72-78.
[10] Song Qi,Xue Jianwu . Study of the Ontology Mapping Method Based on the User Model in the Intelligent Retrieval System[J]. 现代图书情报技术, 2006, 1(9): 29-33.
[11] Yu Juan,Wang Jianzhen,Ma Jinping,Li Yong . OWL Knowledge Representing Based on China Discipline System[J]. 现代图书情报技术, 2006, 1(5): 18-21.
[12] Zhao Wei,Sun Wandong . Multi-Agent Intelligent Retrieval System Model Research Based on Ontology[J]. 现代图书情报技术, 2006, 1(5): 27-30.
[13] Yu Juan,Wang Jianzhen,Ma Jinping,Li Yong . Research on OWL Knowledge Representation Method Based on Curriculum System[J]. 现代图书情报技术, 2006, 1(3): 51-54.
[14] Ma Jianxia. A Study of Application of Topic Map in Knowledge Organization[J]. 现代图书情报技术, 2004, 20(7): 11-16.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938