Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (9): 62-65    DOI: 10.11925/infotech.1003-3513.2007.09.13
Current Issue | Archive | Adv Search |
Automated Folksonomy Research of Tag Resource Based on Synergetic Mechanism
Wu Pengfei1    Meng Xiangzeng2    Ma Fengjuan Lu Wenpeng3
1 (Library of Shijiazhuang College, Shijiazhuang 050035,China)
2 (School of Communication, Shandong Normal University, Jinan 250014,China)
3 (School of Information Science and Technology, Shandong Institute
of Light Industry, Jinan 250100, China)
Download: PDF (437 KB)  
Export: BibTeX | EndNote (RIS)      

This paper, which based on the structure and revelatory rules to Web page’s segmentation and the area semantic identification, realizes the understanding of Web page’s semantics, and presents the definition of the Web multimedia relevant text. Besides that, combining with its distribution characteristics, it has adopted three levels analysis method to carry on the extraction, including the individual level, the area level and the page level, thus realized the Web multimedia relevant text accurately to extract.

Key wordsSemantic      Web multimedia relevant text      Segmentation      Extraction      Mapping     
Received: 08 January 2007      Published: 25 September 2008


Corresponding Authors: Wu Pengfei     E-mail:
About author:: Wu Pengfei,Meng Xiangzeng,Ma Fengjuan,Lu Wenpeng

Cite this article:

Wu Pengfei,Meng Xiangzeng,Ma Fengjuan,Lu Wenpeng. Automated Folksonomy Research of Tag Resource Based on Synergetic Mechanism. New Technology of Library and Information Service, 2007, 2(9): 62-65.

URL:     OR

[1] Eakins J P.Automatic Image Content Retrieval-Are We Getting Anywhere[R]?In:Proc of 3rd Int’l Confon Electronic Library and Visual Information Research.De Montfort University,Milton Keynes:Aslib,1996:123-135.
[2] Gudivada V N ,Raghavan V V .Content-based Image Retrieval System[J].IEEE Computer,1995,28(9):18-22.
[3] Chang S,Smith J,Beigi M,et al.Visual Information Rieval From Large Distributed Onliner Epositories[J].Communictions of ACM,1997(40):63-71.
[4] Rowe N,Frew B.Automatic Caption Localization for Photographs on World-Wide Web pages[J].Information Process and Management,1998(34):95-107.
[5] Frankel C,Swain M,Athitsos V.WebSeer:An Image Search Engine for the World-Wide Web[R].Technical Report 94-14.Computer Science Department,University of Chicago,August,1996.
[6] Harmandas V,Sanderson M,Dunlop M.Image Retrieval by Hpertext Links[C].In:Proceedings of the ACM SIGIR’97 Conference on Research and Development in Information Retrieval.Philadelphia,PA,July,1997,296-33.
[7] 万钧,钟亦平,傅维明,等.启发式相关文本提取技术研究[J].小型微型计算机系统,2004,25(4):582-586.
[8] 吴鹏飞,孟祥增,刘俊晓,等.基于结构与内容的网页主题信息提取研究[J].山东大学学报(理学版),2006,41(3):131-134.
[9] Zhiguo Gong,Leong Hou U,Chan Wa Cheang.Web Image Indexing by Using Associated Texts[J]. Knowledge and Information Systems,  2006, 10(2): 243-264.
[10] 林杰斌,刘明德,陈湘.数据挖掘与OLAP理论与实务[M].北京:清华大学出版社,2003:200-201.

[1] Dai Jianhua, Deng Yubin. Extracting Emotion-Cause Pairs Based on Emotional Dilation Gated CNN[J]. 数据分析与知识发现, 2020, 4(8): 98-106.
[2] Xia Tian. Extracting Key-phrases from Chinese Scholarly Papers[J]. 数据分析与知识发现, 2020, 4(7): 76-86.
[3] Wei Tingxin,Bai Wenlei,Qu Weiguang. Sense Prediction for Chinese OOV Based on Word Embedding and Semantic Knowledge[J]. 数据分析与知识发现, 2020, 4(6): 109-117.
[4] Deng Siyi,Le Xiaoqiu. Coreference Resolution Based on Dynamic Semantic Attention[J]. 数据分析与知识发现, 2020, 4(5): 46-53.
[5] Li Chengliang,Zhao Zhongying,Li Chao,Qi Liang,Wen Yan. Extracting Product Properties with Dependency Relationship Embedding and Conditional Random Field[J]. 数据分析与知识发现, 2020, 4(5): 54-65.
[6] Zhu Lu,Tian Xiaomeng,Cao Sainan,Liu Yuanyuan. Subspace Cross-modal Retrieval Based on High-Order Semantic Correlation[J]. 数据分析与知识发现, 2020, 4(5): 84-91.
[7] Zhang Dongyu,Cui Zijuan,Li Yingxia,Zhang Wei,Lin Hongfei. Identifying Noun Metaphors with Transformer and BERT[J]. 数据分析与知识发现, 2020, 4(4): 100-108.
[8] Zhang Runtong,Chen Donghua,Zhao Hongmei,Zhu Xiaomin. Computer-Assisted ICD-11 Coding Method Based on Chinese Semantic Analysis[J]. 数据分析与知识发现, 2020, 4(4): 44-55.
[9] Tang Lin,Guo Chonghui,Chen Jingfeng. Review of Chinese Word Segmentation Studies[J]. 数据分析与知识发现, 2020, 4(2/3): 1-17.
[10] Wei Wei,Guo Chonghui,Xing Xiaoyu. Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[11] Tian Zhonglin,Wu Xu,Xie Xiaqing,Xu Jin,Lu Yueming. Real-time Analysis Model for Short Texts with Relationship Graph of Domain Semantics[J]. 数据分析与知识发现, 2020, 4(2/3): 239-248.
[12] Hui Nie,Huan He. Identifying Implicit Features with Word Embedding[J]. 数据分析与知识发现, 2020, 4(1): 99-110.
[13] Gang Li,Huayang Zhou,Jin Mao,Sijing Chen. Classifying Social Media Users with Machine Learning[J]. 数据分析与知识发现, 2019, 3(8): 1-9.
[14] Xianlai Chen,Chaopeng Han,Ying An,Li Liu,Zhongmin Li,Rong Yang. Extracting New Words with Mutual Information and Logistic Regression[J]. 数据分析与知识发现, 2019, 3(8): 105-113.
[15] Mingzhu Sun,Jing Ma,Lingfei Qian. Extracting Keywords Based on Topic Structure and Word Diagram Iteration[J]. 数据分析与知识发现, 2019, 3(8): 68-76.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938