Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 25 Issue (5): 39-43    DOI: 10.11925/infotech.1003-3513.2009.05.08
Current Issue | Archive | Adv Search |
Chinese Text Keywords Extraction Based on Fuzzy Processing
Zhang Hongying
(Adult Education College,Anhui University of Finance and Economics, Bengbu 233000,China)
Download: PDF (493 KB)  
Export: BibTeX | EndNote (RIS)      

This article studies algorithms of keywords extraction and analyzes factors that may influence the extraction. Based on the quantification of these factors, this paper proposes the complete framework of a model that includes word segmentation and part-of-speech tagging, text pre-treatment, weighted linear algorithm, generation and filtering of word combination, and combination of candidate keywords.

Key wordsText      Keyword      Extraction      Fuzzy processing     
Received: 18 December 2008      Published: 25 May 2009


Corresponding Authors: Zhang Hongying     E-mail:
About author:: Zhang Hongying

Cite this article:

Zhang Hongying. Chinese Text Keywords Extraction Based on Fuzzy Processing. New Technology of Library and Information Service, 2009, 25(5): 39-43.

URL:     OR

[1] Luhn H P.A Statistical Approach to Mechanized Encoding and Searching of Literary Information[J].IBM Journal of Research and Development,1957,1(4):309-317.
[2] 张敏, 耿焕同, 王煦法. 一种利用BC 方法的关键词自动提取算法研究[J]. 小型微型计算机系统, 2007(6):189-192.
[3] 刘华. 基于文本分类中特征提取的领域词语聚类 [J]. 语言文字应用,2007(1):139 - 144.
[4] 方清华. 信息检索加权理论与技术:基于VSM模型的分析[J]. 情报杂志, 2008(6):73-76.
[5] 王灿辉,张敏,马少平,等. 基于相邻词的中文关键词自动抽取[J].广西师范大学学报(自然科学版), 2007(2):161-164.
[6] 索红光, 刘玉树, 曹淑英. 一种基于词汇链的关键词抽取方法[J]. 中文信息学报, 2006(6):25-30.
[7] Li S J,Wang H F,Yu S W,et al.Research on Maximum Entropy Model for Keyword Indexing[J].Chinese Journal of Computers,2004,27(9):1192-1197.

[1] Dai Jianhua, Deng Yubin. Extracting Emotion-Cause Pairs Based on Emotional Dilation Gated CNN[J]. 数据分析与知识发现, 2020, 4(8): 98-106.
[2] Yu Chuanming, Wang Manyi, Lin Hongjun, Zhu Xingyu, Huang Tingting, An Lu. A Comparative Study of Word Representation Models Based on Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[3] Tang Xiaobo,Gao Hexuan. Classification of Health Questions Based on Vector Extension of Keywords[J]. 数据分析与知识发现, 2020, 4(7): 66-75.
[4] Xia Tian. Extracting Key-phrases from Chinese Scholarly Papers[J]. 数据分析与知识发现, 2020, 4(7): 76-86.
[5] Jiao Qihang,Le Xiaoqiu. Generating Sentences of Contrast Relationship[J]. 数据分析与知识发现, 2020, 4(6): 43-50.
[6] Wang Sidi,Hu Guangwei,Yang Siyu,Shi Yun. Automatic Transferring Government Website E-Mails Based on Text Classification[J]. 数据分析与知识发现, 2020, 4(6): 51-59.
[7] Li Chengliang,Zhao Zhongying,Li Chao,Qi Liang,Wen Yan. Extracting Product Properties with Dependency Relationship Embedding and Conditional Random Field[J]. 数据分析与知识发现, 2020, 4(5): 54-65.
[8] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[9] Gao Yuan,Shi Yuanlei,Zhang Lei,Cao Tianyi,Feng Jun. Reconstructing Tour Routes Based on Travel Notes[J]. 数据分析与知识发现, 2020, 4(2/3): 165-172.
[10] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[11] Tian Zhonglin,Wu Xu,Xie Xiaqing,Xu Jin,Lu Yueming. Real-time Analysis Model for Short Texts with Relationship Graph of Domain Semantics[J]. 数据分析与知识发现, 2020, 4(2/3): 239-248.
[12] Ma Jianxia,Yuan Hui,Jiang Xiang. Extracting Name Entities from Ecological Restoration Literature with Bi-LSTM+CRF[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[13] Bengong Yu,Yumeng Cao,Yangnan Chen,Ying Yang. Classification of Short Texts Based on nLD-SVM-RF Model[J]. 数据分析与知识发现, 2020, 4(1): 111-120.
[14] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[15] Hui Nie,Huan He. Identifying Implicit Features with Word Embedding[J]. 数据分析与知识发现, 2020, 4(1): 99-110.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938