Please wait a minute...
New Technology of Library and Information Service  2013, Vol. Issue (6): 49-54    DOI: 10.11925/infotech.1003-3513.2013.06.08
Current Issue | Archive | Adv Search |
Sentiment Analysis of Product Reviews by means of Cross-domain Transfer Learning
Zhang Zhiwu
Nanjing University of Posts and Telecommunications Library, Nanjing 210003, China
Download: PDF(612 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the problem of sentiment analysis of incomplete product reviews data, this paper proposes a cross-domain sentiment analysis method based on spectral clustering and transfer learning. With the help of domain-independent words as a bridge, using spectral clustering algorithm to align domain-specific words from different domains into unified clusters, it can reduce the gap between domain-specific words of the two domains, and can improve the accuracy of sentiment classifiers in the target domain. Experiments studies are carried out to show the efficiency and superiority of the proposed approach in solving the problem of cross-domain sentiment analysis of product reviews.
Key wordsSentiment analysis      Transfer learning      Cross-domain      Spectral clustering      Product reviews     
Received: 25 March 2013      Published: 24 July 2013
:  TP391  

Cite this article:

Zhang Zhiwu. Sentiment Analysis of Product Reviews by means of Cross-domain Transfer Learning. New Technology of Library and Information Service, 2013, (6): 49-54.

URL:     OR

[1] Pang B, Lee L. Opinion Mining and Sentiment Analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1/2): 1-135.
[2] 马凤闸,吴江宁,杨光飞.基于双重选择策略的跨领域情感倾向性分析[J]. 情报学报,2012, 31(11):1202-1209. (Ma Fengzha, Wu Jiangning, Yang Guangfei. Cross-domain Sentiment Analysis Based on Double Selection Strategy[J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(11):1202-1209.)
[3] 黄贤立.基于典型相关分析的多视图跨领域情感分类[J]. 计算机工程,2010,34(24):186-188.(Huang Xianli. Multi-view Cross Domain Sentiment Classification Based on Canonical Correlation Analysis[J].Computer Engineering, 2010,34(24):186-188.)
[4] Blitzer J, Dredze M, Pereira F. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification[C].In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics.2007:440-447.
[5] Tan S B, Cheng X Q, Wang Y F, et al. Adapting Naive Bayes to Domain Adaptation for Sentiment Analysis[C].In: Proceedings of the 31st European Conference on IR Research on Advances in Information Retrieval. Berlin, Heidelberg: Springer-Verlag,2009:337-349.
[6] Pan S J, Ni X C, Sun J T, et al. Cross-domain Sentiment Classification via Spectral Feature Alignment[C]. In: Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA: ACM,2010:751-760.
[7] Tan S B, Wu G W, Tang H F, et al. A Novel Scheme for Domain-transfer Problem in the Context of Sentiment Analysis[C]. In: Proceedings of the 16th ACM Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2007: 979-982.
[8] 杨文让,王中卿,李培峰,等.基于质心迁移的领域适应性情感分类[J]. 计算机应用与软件,2011, 28(12):26-28.(Yang Wenrang, Wang Zhongqing, Li Peifeng, et al. Adaptive Domain Sentiment Classification Based on Centroid Transfer[J]. Computer Applications and Software, 2011, 28(12):26-28.)
[9] 张慧,李寿山,李培峰,等.基于评价对象类别的跨领域情感分类方法研究[J]. 计算机科学,2013, 40(1):229-232.(Zhang Hui, Li Shoushan, Li Peifeng, et al. Cross-domain Sentiment Classification with Opinion Target Categorization [J].Computer Science,2013,40(1):229-232.)
[10] 张莉.跨领域中文评论的情感分类研究[J]. 计算机应用研究,2013,30(3):736-741.(Zhang Li. Research on Sentiment Analysis of Cross-domain Chinese Comments[J].Application Research of Computers, 2013,30(3):736-741.)
[11] Chung F R K. Spectral Graph Theory[M]. American Mathematical Society,1997.
[12] 李新福,赵蕾蕾,何海斌,等.使用Logistic回归模型进行中文文本分类[J]. 计算机工程与应用,2009, 45(14):152-154.(Li Xinfu, Zhao Leilei, He Haibin,et al. Using Logistic Regression Model for Chinese Text Categorization[J].Computer Engineering and Applications,2009,45(14):152-154.)
[1] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[2] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[3] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[4] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[5] Xiangdong Li,Fan Gao,Youhai Li. Categorizing Documents Automatically within Common Semantic Space[J]. 数据分析与知识发现, 2018, 2(9): 66-73.
[6] Jiehua Wu,Jing Shen,Bei Zhou. Classifying Multilayer Social Network Links Based on Transfer Component Analysis[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[7] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[8] Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[9] Sinan Yang,Jian Xu,Pingping Ye. Review of Online Sentiment Visualization Techniques[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[10] Tingting Wang,Kaiping Wang,Guijie Qi. Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
[11] Yang Zhao,Qiqi Li,Yuhan Chen,Wenhang Cao. Examining Consumer Reviews of Overseas Shopping APP with Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(11): 19-27.
[12] Yue He,Can Zhu. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[13] Hongli Zhang,Jiying Liu,Sinan Yang,Jian Xu. Predicting Online Users’ Ratings with Comments[J]. 数据分析与知识发现, 2017, 1(8): 48-58.
[14] Ge Gao,Junmei Luo,Yu Wang. Analyzing Textual Sentiment Based on HNC Theory[J]. 数据分析与知识发现, 2017, 1(8): 85-91.
[15] Huanrong Shou,Shuqing Deng,Jian Xu. Detecting Online Rumors with Sentiment Analysis[J]. 数据分析与知识发现, 2017, 1(7): 44-51.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938