Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (11): 82-90    DOI: 10.11925/infotech.1003-3513.2015.11.12
Current Issue | Archive | Adv Search |
Utilization of Sentiment Analysis and Visualization in Online Video Bullet-screen Comments
Zheng Yangyang1, Xu Jian1, Xiao Zhuo2
1 School of Information Management, Sun Yat-Sen University, Guangzhou 510006, China;
2 Libraries of Sun Yat-Sen University, Guangzhou 510275, China
Download: PDF(1992 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

[Objective] By collecting and visualizing the sentiment information from bullet-screen comments, we can extract the emotion features and the trend of online videos.[Context] The visualized information of bullet-screen comments can be considered as sentiment tags. Based on these labels of online video, a new retrieval model focusing on comment emotion can be raised.[Methods] According to sentence level sentiment analysis, the study model of sentiment analysis towards bullet-screen comments is developed, including process of constructing sentiment word dictionary, extracting sentiment words and calculating weight value of comments based on time series.[Results] Analyzing tools of radar map, tag cloud and trend-curve diagram are utilized to present the outcome.[Conclusions] Sentiment analysis and visualization methods utilized in bullet-screen comments can provide a new approach to retrieve online videos.

Received: 08 June 2015      Published: 06 April 2016
:  G250  

Cite this article:

Zheng Yangyang, Xu Jian, Xiao Zhuo. Utilization of Sentiment Analysis and Visualization in Online Video Bullet-screen Comments. New Technology of Library and Information Service, 2015, 31(11): 82-90.

URL:     OR

[1] AcFun弹幕视频网[DB/OL]. [2015-04-17]. http://www.acfun. tv/. (AcFun [DB/OL]. [2015-04-17].
[2] 哔哩哔哩弹幕视频网[DB/OL]. [2015-04-17]. http://www. (bilibili [DB/OL]. [2015-04-17]. http://www.
[3] Pang B, Lee L. Thumbs up?: Sentiment Classification Using Machine Learning Techniques [C]. In: Proceedings of the Conference on Empirical Methods in NLP. Morristown: ACL, 2002: 79-86.
[4] 刘志明, 刘鲁. 基于机器学习的中文微博情感分类实证研究[J]. 计算机工程与应用, 2012, 48(1): 1-4. (Liu Zhiming, Liu Lu. Empirical Study of Sentiment Classification for Chinese Microblog Based on Machine Learning [J]. Computer Engineering and Applications, 2012, 48(1): 1-4.)
[5] Yu H, Hatzivassiloglou V. Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences [C]. In: Proceedings of the Conference on Empirical Methods in NLP. Morristown: ACL, 2003:129-136.
[6] Hu M, Liu B. Mining and Summarizing Customer Reviews [C]. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2004:168-177.
[7] Kim S M, Hovy E. Determining the Sentiment of Opinions [C]. In:Proceedings of the 20th International Conference on Computational Linguistics. Morristown: ACL, 2004: 1367-1373.
[8] Yang S, Li S, Zheng L, et al. Emotion Mining Reasearch on Microblog [C]. In: Proceedings of the 1st IEEE Symposium on Web Society (SWS'09). 2009: 71-75.
[9] 徐琳宏, 林鸿飞, 赵晶. 情感语料库的构建和分析[J]. 中文信息学报, 2008, 22(1): 116-122. (Xu Linhong, Lin Hongfei, Zhao Jing. Construction and Analysis of Emotional Corpus [J]. Journal of Chinese Information Processing, 2008, 22(1): 116-122.)
[10] 刨丁解羊中文分词器v3.2 [K/OL]. [2015-04-17]. http://www. (Paodingjieyang Chinese Word Segmentation Machine [K/OL]. [2015-04-17]. http://www.crsky. com/soft/22209.html.)
[11] Rao D, Ravichandran D. Semi-Supervised Polarity Lexicon Induction [C]. In: Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics. Morristown: ACL, 2009: 675-682.
[12] 杜振雷. 面向微博短文本的情感分析研究[D]. 北京: 北京信息科技大学, 2013. (Du Zhenlei. Sentiment Analysis Towards Microblog Short Text [D]. Beijing: Beijing Information Science and Technology University, 2013.)
[13] 谢丽星, 周明, 孙茂松. 基于层次结构的多策略中文微博情感分析和特征抽取[J]. 中文信息学报, 2012, 26(1): 73-83. (Xie Lixing, Zhou Ming, Sun Maosong. Hierarchical Structure Based Hybrid Approach to Sentiment Analysis of Chinese Micro Blog and Its Feature Extraction [J]. Journal of Chinese Information Processing, 2012, 26(1): 73-83.)
[14] TagxeDo: 在线云词成像制作工具[K/OL]. [2015-04-17]. http:// (TagxeDo [K/OL]. [2015-04-17]. http://www.

[1] Liu Feng, Zhang Xiaolin. Review on the Scientific Metadata Standards and Research on Its Generic Design[J]. 现代图书情报技术, 2015, 31(12): 3-12.
[2] Sun Yi'nan, Ku Liping, Song Xiufang, Liu Jingjing, Jiang Xian. The Policy Research and Analysis of Subject Data Repository ——Cases Study of Life Sciences[J]. 现代图书情报技术, 2015, 31(12): 13-20.
[3] Bi Qiang, Liu Jian. Research on the Service Recommendation of the Content of Digital Literature Resources[J]. 现代图书情报技术, 2015, 31(12): 21-27.
[4] Zhu Guang. Copyright Protection Scheme of Color Images for Libraries, Museums and Archives Based on Zero-Watermarking[J]. 现代图书情报技术, 2015, 31(12): 89-94.
[5] Wang Zhengjun, Yu Xiaoyi, Jin Yuling. Using Sniffer Technology to Constraint Electronic Resource Excessive Downloading[J]. 现代图书情报技术, 2015, 31(12): 95-100.
[6] Jin Wei, Zhao Rongying, Yin Ge. An Analysis of the Accumulation State and the Validity of User Readership Data in Online Reference Managers ——Take the Indicators of Altmetrics as an Example[J]. 现代图书情报技术, 2015, 31(11): 75-81.
[7] Liu Yueru, Guo Limin. The New Utilizes of WeChat Platform with Interactive Functions[J]. 现代图书情报技术, 2015, 31(11): 104-109.
[8] Zhang Chengzhi, Gu Xiaoxue. Clustering Machine-Generated Tags with Different Quality[J]. 现代图书情报技术, 2015, 31(10): 22-29.
[9] Gu Xiaoxue, Zhang Chengzhi. Combined with Annotated Content and User Attributes for Tag Clustering[J]. 现代图书情报技术, 2015, 31(10): 30-39.
[10] Liu Dan. Personalized Book Recommender Service Deployment Using Apache Mahout[J]. 现代图书情报技术, 2015, 31(10): 102-108.
[11] Ma Yumeng, Guo Jinjing, Wang Fang. Research on the Framework of Semantic Organization Model for Research Data in the e-Science Environment[J]. 现代图书情报技术, 2015, 31(7-8): 48-57.
[12] Wu Dan, Ran Aihua. A Comparative Study of Mobile Reading Applications Based on User Experiences[J]. 现代图书情报技术, 2015, 31(7-8): 73-79.
[13] Chen Ting, Han Tao, Li Zexia, Li Guopeng, Wang Xiaomei. Research on Comparison Method of Scientific Funding Layout——Take NSF and EU FP Grants for Instance[J]. 现代图书情报技术, 2015, 31(7-8): 89-96.
[14] Guo Zhenying, Zhao Wenbing, Wei Yuhui. Construction of Linked Data with Lightweight Book Bibliography Ontology[J]. 现代图书情报技术, 2015, 31(7-8): 139-143.
[15] Guo Limin, Liu Yueru, Xiang Mingqiong. Application of WeChat QR Code in Reader Authentication[J]. 现代图书情报技术, 2015, 31(7-8): 144-147.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938