Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (7): 15-17    DOI: 10.11925/infotech.1003-3513.2005.07.04
Current Issue | Archive | Adv Search |
Study on Semantic-Based Information Retrieval for Digital Library
Zhao Linjing1   Zhuang Xia2  
1(Library of Southwest Normal University, Chongqing 400715,China)
2(Faculty of Computer and Information Science, Southwest Normal University, Chongqing 400715, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

The basic technologies of semantic Web and its hierarchy model are studied in this paper. The author proposes a new digital library framework based on the semantic Web, and illustrates the system infrastructure. The paper also discusses the related technologies for realizing the system. Based on the semantic Web and ontology, this model expands the traditional retrieval schema from keyword-based to semantic\|based.

Key wordsDigital library      Semantic Web      Ontology      Information retrieval     
Received: 15 April 2005      Published: 25 July 2005


Corresponding Authors: Zhuang Xia     E-mail:
About author:: Zhao Linjing,Zhuang Xia

Cite this article:

Zhao Linjing,Zhuang Xia. Study on Semantic-Based Information Retrieval for Digital Library. New Technology of Library and Information Service, 2005, 21(7): 15-17.

URL:     OR

2Berners-Lee T, Hendler J, Lassila O. The semantic Web. Scientific American, 2001,284(5): 34-43
4Fernaneez M, Juristo N. Methontology: From Ontological Art Towards Ontological Engineering. AAAI-97 Spring Symposium on Ontological Engineering, Stanford University, March 24-26th, 1997

[1] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[2] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[3] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[4] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[5] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[6] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[7] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[8] Sun Haixia,Wang Lei,Wu Yingjie,Hua Weina,Li Junlian. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[9] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[10] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[11] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[12] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[13] Yang Chaofan,Deng Zhonghua,Peng Xin,Liu Bin. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[14] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[15] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938