Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (7): 30-33    DOI: 10.11925/infotech.1003-3513.2005.07.08
Current Issue | Archive | Adv Search |
Algebra-Based Retrieval Model and Its Extension
Wang Zhijin    Zheng Hongjun
(The Department of Library Science, Nankai University, Tianjin 300071, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

In information retrieval, Algebra Theory is one of significant tools of Retrieval Modeling. The models on the basis of Algebra overcome the fault that partial matching can not be implemented within Boolean Model, then become more and more popular. This article analyses the Vector Space Model based on Algebra, and expands the model: expresses the index terms with minterm in order to reflect the relationship between terms, uses singular value decomposition to present the semantic structure of documents. At last, makes the compare between these models.

Key wordsInformation retrieval      Mathematics model      Vector space mode      Generalized vector space mode      Latent semantic indexing     
Received: 14 March 2005      Published: 25 July 2005


Corresponding Authors: Wang Zhijin     E-mail:
About author:: Wang Zhijin,Zheng Hongjun

Cite this article:

Wang Zhijin,Zheng Hongjun. Algebra-Based Retrieval Model and Its Extension. New Technology of Library and Information Service, 2005, 21(7): 30-33.

URL:     OR

4冯项云.LSI潜在语义标引方法在情报检索中的应用.现代图书情报技术,1998(4): 19-21
6Jennifer Chu-Carroll & Bob Carpenter.Vector-based Natural Language Call Routing. Computational Linguistics,1999,25(3):361-388

[1] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[2] Sun Haixia,Wang Lei,Wu Yingjie,Hua Weina,Li Junlian. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[3] Yang Chaofan,Deng Zhonghua,Peng Xin,Liu Bin. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[4] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[5] Zhang Xiaojuan,Han Yi. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[6] Huang Mingxuan. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[7] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[8] Heng Ding, Wei Lu. A Study on Correlation-based Cross-Modal Information Retrieval[J]. 现代图书情报技术, 2016, 32(1): 17-23.
[9] Tan Xueqing, Zhou Tong, Luo Lin. A Text Classification Algorithm Based on the Average Category Similarity[J]. 现代图书情报技术, 2014, 30(9): 66-73.
[10] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
[11] Li Xiangdong, Liao Xiangpeng, Huang Li. Research and Implementation of Bibliographic Information Classification System in LDA Model[J]. 现代图书情报技术, 2014, 30(5): 18-25.
[12] Qiu Junping, Fang Guoping. The Comparative Analysis of Natural Language Processing Research at Home and Abroad Based on Knowledge Mapping[J]. 现代图书情报技术, 2014, 30(12): 51-61.
[13] Hu Jiming, Xiao Lu. Semantic Incremental Improvement on Vector Space Model for Text Modeling[J]. 现代图书情报技术, 2014, 30(10): 49-55.
[14] Tang Jingxiao,Lv Xueqiang,Liu Chengyang,Li Han. A Hierarchical Framework for User Intention Recognition[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[15] Zhang Mei, Duan Jianyong, Xu Jichao. Person Name Attribute Knowledge Mining and Its Application for Query Classification[J]. 现代图书情报技术, 2013, 29(9): 82-87.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938