Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (10): 43-47    DOI: 10.11925/infotech.1003-3513.2006.10.10
Current Issue | Archive | Adv Search |
A Study on the Model and Application of Knowledge Integration in Intelligence Analysis
Wang Yuefen    Zhu Hailing    Yan Duanwu
(School of Economics and Management,Nanjing University of Science and Technology, Nanjing 210094,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

This paper describes the relation between knowledge integration and intelligence analysis, discusses the aims for combination of intelligence analysis and knowledge integration. Based on Ontology, this paper explores an idea about knowledge integration, also puts forward a model of knowledge integration discusses some schemes for application based on domain and task which face different problems of intelligence analysis.

Key wordsIntelligence analysis      Ontology      Knowledge integration      Model construction      Application schemes     
Received: 03 August 2006      Published: 25 October 2006


Corresponding Authors: Wang Yuefen     E-mail:
About author:: Wang Yuefen,Zhu Hailing,Yan Duanwu

Cite this article:

Wang Yuefen,Zhu Hailing,Yan Duanwu . A Study on the Model and Application of Knowledge Integration in Intelligence Analysis. New Technology of Library and Information Service, 2006, 1(10): 43-47.

URL:     OR

6Cf.T.R.Gruber.A translation approach to portable ontologies.Knowledge Acqusition,1993(2):199-220
7Thomas,R.Gruber.Toward Principles for the Design of Ontologies.Used for Knowledge Sharing,1993(8):211-213

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Lianjie Xiao,Tao Meng,Wei Wang,Zhixiang Wu. Entity Recognition of Intelligence Method Based on Deep Learning: Taking Area of Security Intelligence for Example[J]. 数据分析与知识发现, 2019, 3(10): 20-28.
[6] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[7] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[8] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[9] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[10] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[11] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[12] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[13] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[14] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[15] Yan Jing,Bi Qiang,Li Jie,Wang Fu. Construction of Aggregation Quality Predicting Model for Digital Resource in Library ——Based on Improved Genetic Algorithm and BP Neural Network[J]. 数据分析与知识发现, 2017, 1(12): 49-62.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938