Please wait a minute...
New Technology of Library and Information Service  2004, Vol. 20 Issue (3): 5-9    DOI: 10.11925/infotech.1003-3513.2004.03.02
Current Issue | Archive | Adv Search |
Website Selfadjustment Strategy for Distance  Learning Using Fuzzy Clustering
Zou Yuan  Niu Zhendong2,3
1(Department of Computer Science, Beijing Institute of Technology, Beijing 100081, China)
2(China Digital Library Corp., Ltd, Beijing 100081, China)
3(The School of Software, Beijing Institute of Technology, Beijing 100081, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

The proliferation of Web applications and information technologies in the field of education has made people jump the traces of traditional learning style, and sparks the distance learning. An important part of distance learning is to provide personal learning Website, which can reflect user profiles and knowledge level. In this paper, the authors apply the fuzzy theory to the distance learning Website mode.Their Website model has the function of self-adjustment and is a good study platform for students. The architecture and strategies of the self-adjustment Website and improve the CA clustering algorithm that can deal with data without explicit feature are discussed in this paper.

Key wordsDistance learning      Web mining      Fuzzy clustering      User access pattern     
Received: 30 December 2003      Published: 25 March 2004


Corresponding Authors: Niu Zhendong     E-mail:
About author:: Zou Yuan,Niu Zhendong

Cite this article:

Zou Yuan,Niu Zhendong. Website Selfadjustment Strategy for Distance  Learning Using Fuzzy Clustering. New Technology of Library and Information Service, 2004, 20(3): 5-9.

URL:     OR

1Perkowitz M, Etzioni O. Adaptive Web Sites: Automatically Synthesizing Web Pages. Proc AAAI98, Madison, Wisconsin, 1998:727-732
2Spiliopoulou M. The Laborious Way from Data Ming to Web Ming. International Journal of Computer System, Science & Engineer, Special Issue on "Semantics of the Web", 1999, 3(1): 105-113
3Cooley R, Mobasher B et al. Data Preparation for Mining World Wide Web Browsing Patterns. Knowledge and Information Systems, 1999, 1(1): 17-24
4Buchner A G, Mulvenna M D. Discovering Internet Marketing Intelligence through Online Analytical Web Usage Mining. SIGMOD Record, 1998, 27(4): 54-61
5Schechter S, Krishman M, Smith M D, Using Path Profiles to Predict HTTP requests. Proc The 7th International World Wide Web Conference, Brisbane, Australia, 1998:214-209
6Shahabi C, Zarkesh A M, Adibi J et al. Knowledge Discovery from Users Web-page navigation. Proc Workshop on Research Issues in Data Engineering, Birmingham, England, 1997:312-324
7Yan T, Jacobesn M, Garcia-Molina H et al. From User Access Patterns to Dynamic Hypertext Linking. Proc The 5th International World Wide Web Conference, Paris, France, 1996:402-410
8Nasraoui O, Frigui H, Joshi A et al. Mining Web Access Logs Using Relational Competitive Fuzzy Clustering. Proc The 8th International Fuzzy System Association World Congress, Madison, Wisconsin, 1999:79-85
9Efficiently mining tree traversal patterns in a Web Environment TENCON'98. 1998 IEEE Region 10 International Conference on Global Connectivity in Energy, Computer, Communication and Control. vol.1: 115-117
10叶树江,张建华. 新型网络教学模式的探索与实践. 黑龙江高教研究,2003(2)
11Frigui H., Krishnapuram R., Clustering by Competitive Agglomeration, Pattern Recognition Letters, 07-1997, 30 (7):1109-1119

[1] Liu Zhanbing, Xiao Shibin. Collaborative Filtering Recommended Algorithm Based on User's Interest Fuzzy Clustering[J]. 现代图书情报技术, 2015, 31(11): 12-17.
[2] Duan Jianyong, Xu Jichao, Zhang Mei. Query Semantic Relation Mining from Web Log and Its Application[J]. 现代图书情报技术, 2012, 28(1): 58-62.
[3] Tang Tianbo,Gao Feng. The Application of Visualization Technology in Link Analysis[J]. 现代图书情报技术, 2009, 3(2): 78-82.
[4] Ding Yi. on the Specific Topic on Web[J]. 现代图书情报技术, 2005, 21(6): 26-29.
[5] Pu Xiaoge. Design an Information Mining System Based on Web[J]. 现代图书情报技术, 2005, 21(4): 27-30.
[6] Pan Youneng,Deng Sanhong. Web Mining Research Based on XML and Association Rules[J]. 现代图书情报技术, 2004, 20(7): 30-34.
[7] Wang Yan. The Application of Data Mining in Digital Library[J]. 现代图书情报技术, 2002, 18(5): 8-10.
[8] Gao Yan,Hu Jingtao. Principles、Methods and Application of Web Mining[J]. 现代图书情报技术, 2002, 18(3): 51-53.
[9] Chen Dingquan. An Review of Web Information Retrieval[J]. 现代图书情报技术, 2002, 18(2): 39-41.
[10] Zhao Danqun. Data Mining:Principles、Methods and Application[J]. 现代图书情报技术, 2000, 16(6): 41-44.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938