Please wait a minute...
New Technology of Library and Information Service  2003, Vol. 19 Issue (2): 57-60    DOI: 10.11925/infotech.1003-3513.2003.02.17
Current Issue | Archive | Adv Search |
Analysis, Design and Implementation of Subject Information Navigation System Based on Data Mining
Zhang Chengyu   Wang Ping   Zhao Yi   Lai Qiang   Kong Li
(Tsinghua  University  Library,Beijing 100084,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

The background and significance of developing this system is presented in introduction. In the first two parts, the architecture and framework of this system and NRM self-established are described. In the last three parts, the function and realization mechanism about the model of resource supervision and evaluation, the model of data- mining and the model of users 'information feedback are emphatically expatiated. At the end, the kernel of network information resource management was expounded.

Key wordsInformation navigation      Data mining      Network supervision      System analysis      System design     
Received: 29 August 2002      Published: 25 April 2003


Corresponding Authors: Zhang Chengyu Wang Ping Zhao Yi,Lai Qiang,Kong Li   
About author:: Zhang Chengyu Wang Ping Zhao Yi,Lai Qiang,Kong Li

Cite this article:

Zhang Chengyu Wang Ping Zhao Yi,Lai Qiang,Kong Li. Analysis, Design and Implementation of Subject Information Navigation System Based on Data Mining. New Technology of Library and Information Service, 2003, 19(2): 57-60.

URL:     OR

[1] 范冰冰,孙正严.构建中国因特网信息导航系统面临的主要问题.电信科学,1999,(3):10—12
[2] 邹涛,黄源,张福炎. 基于WWW的文本信息挖掘.情报学报,1999,(8):289—293
[3] 蒋永新. 学术网站评价方法述评. 人大复印资料 图书馆学、信息科学、资料工作,2001,(8):83—84
[4] 黄奇,郭晓苗. Internet上网站资源的评价.情报科学,2000,(4):350—354
[5] 林海青. 数字图书馆的元数据体系. 中国图书馆学报, 2000,(4):59—64
[6] 林国华. 图书馆在网络信息资源配置中的作用探讨.国家图书馆学刊,2001,(3):50—53
[7] 张成昱. 高校虚拟图书馆建设刍议. 情报学报,1999,8(增刊):信息经济与网上信息资源专辑)

[1] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[2] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[3] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[4] Li Yongnan. Using Bayes Theory to Classify Counter Terrorism Intelligence[J]. 数据分析与知识发现, 2018, 2(10): 9-14.
[5] Mu Dongmei,Wang Ping,Zhao Danning. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[6] Hu Zhongyi,Wang Chaoqun,Wu Jiang. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[7] Jiang Siwei,Xie Zhenping,Chen Meijie,Cai Ming. Self-Explainable Reduction Method for Mixed Feature Data Modeling[J]. 数据分析与知识发现, 2017, 1(12): 92-100.
[8] Mu Dongmei,Ren Ke. Discovering Knowledge from Electronic Medical Records with Three Data Mining Algorithms[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[9] Li Feng,Li Shu’ning,Yu Jing. A Department Oriented Library Usage Data System for Graduates[J]. 现代图书情报技术, 2016, 32(5): 99-103.
[10] Zhao Jingxian. Detect of Internet Fake Public Opinion Based on Decision Tree[J]. 现代图书情报技术, 2015, 31(6): 78-84.
[11] He Jianmin, Wang Zhe. The Pedigree Method to Mine Influential Clusters of Topic Information in Social Network[J]. 现代图书情报技术, 2015, 31(5): 65-72.
[12] Huang Wenbin, Xu Shanchuan, Ma Long, Wang Jun. Analysis of Mobile User Behaviors with Telecommunication Data[J]. 现代图书情报技术, 2015, 31(5): 80-87.
[13] Hao Mei, Wang Daoping. Mining Customer Focus Features from Product Reviews Oriented Supply Chain[J]. 现代图书情报技术, 2014, 30(4): 65-70.
[14] Sun Hongfei, Hou Wei. Application of Improved TFIDF Algorithm in Mining Potential Cooperation Relationship[J]. 现代图书情报技术, 2014, 30(10): 84-92.
[15] Bi Qiang, Wang Yu. Fronts and Hotspots of the Application Research on Folksonomy Abroad[J]. 现代图书情报技术, 2013, 29(7/8): 36-42.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938