Please wait a minute...
New Technology of Library and Information Service  2004, Vol. 20 Issue (6): 1-5    DOI: 10.11925/infotech.1003-3513.2004.06.01
Current Issue | Archive | Adv Search |
Information Extraction and Its Functions in the Digital Library
Zhang Zhixiong
(Library of Chinese Academy of Science, Beijing 100080, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

Information Extraction (IE) is a term which has come to be applied to the activity of automatically extracting pre-specified sorts of information from natural language texts. This paper analyses the basic concept of information extraction, the main research activities on information extraction, the type of information extraction and the system of information extraction. The author believes information extraction will play a very important role in coping with the huge collection of digital information. It can provide helps in automat ic annotation of digital materials, automatic acquisition of metadata, improving data mining in information analysis, developing knowledge base from free text, and generating answers in digital reference system.

Key wordsInformation Extraction(IE)      Message understanding conference      Digital library      Natural language processing     
Received: 08 March 2004      Published: 25 June 2004


Corresponding Authors: Zhang Zhixiong     E-mail:
About author:: Zhang Zhixiong

Cite this article:

Zhang Zhixiong. Information Extraction and Its Functions in the Digital Library. New Technology of Library and Information Service, 2004, 20(6): 1-5.

URL:     OR

1  Andrew Joscelyne and Rose Lockwood,EUROMAP Final Report: BenchmarkingHLTprogressinEurope-FullReport.,2004)
2  Gate Information Extraction, Feb.8,2004)
3  NLP group of University of Sheffield,Information Extraction. Feb.8,2004)
4  Douglas E.Appeltand DavidJ.Israel,Introduction to Informa
tion Extraction.Technology, Feb.8,2004)
5  Donna Harman,Whatis Information Extraction? Feb.8,2004)
6  Hamish Cunningham,Information Extraction-a User Guide(SecondEdition), Feb.8,2004)
7  RALI,Bilingual Information Extraction, Feb.8,2004)
8  Jakub Piskorski&FeiyuXu,Overview of MUC and Introduction to Text Mining, Feb.8,2004)
9  Nancy A.Chinchor,OVERVIEWOFMUC-7/MET , Feb.
10  E.Marsh&D.Perzanowski,MUC-7EVALUATION OF IE TECHNOLOGY:Overviewofresults, Feb.8,2004)
11  ACE-Automatic Content Extraction, Feb.8,2004)
12  Diana Maynard,Kalina Bontcheva,Hamish Cunningham,To wards a semantic extraction of named entities,In Proceedings Recent Advances in Natural,Borovets,Bulgaria,2003. Feb.8,2004)
13  H.Cunningham etc.,GATE:A framework and graphical development environment for robust NLP tools and applications,Proceedings of the 40th Anniversary Meeting of the Associationfor Computational Linguistics(2002). Feb.8,2004)
14  Valentin Tablan,GATE and Information Extraction, Feb.8,2004)
15  ANNIE. Feb.8,2004)
16  Kalina Bontchevaetc.,Using Human Language Technology for Automatic Annotation and Indexing of Digital Library Content.Proceedings of the 6th European Conference on Research and Advanced Technology for Digital Libraries(ECDL’2002),Rome, September2002. Feb.8,2004)
17  Reinoso-Castillo,J.(2002).Ontolgy-Driven Information Extraction and Integration from Autonomous ,Heterogeneous,Distributed Data Sources--AFederatedQuery-Centric Approach.Masters Thesis.Artificial Intelligence Research Laboratory.Department of Computer Science.Iowa State University
(Accessed Feb.8,2004)
18  Vasant Honavaretc.,Ontology-Driven Information Extraction and Knowledge Acquisition from Heterogeneous,Distributed,Autonomous Biological Data Sources.,2004)
19  Roazhon,Information Extraction:from unstructured texts to knowledge bases, Feb.8,2004)
20  Rohini Srihariand WeiLi,Information Extraction Supported Question Answering. Feb.8,2004)

[1] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[2] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[3] Yang Chunlei. Quantification Constraint System for Pragmatic Disambiguation: From Linguistic Design to Computational Implementation[J]. 数据分析与知识发现, 2017, 1(11): 1-11.
[4] Qi Yunfei,Zhao Yuxiang,Zhu Qinghua. Linked Data for Mobile Visual Search System of Digital Library[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[5] Hong Liang,Qian Chen,Fan Xing. Context-aware Recommendation System for Mobile Digital Libraries[J]. 现代图书情报技术, 2016, 32(7-8): 110-119.
[6] Yang Chunlei. Building Online System for Chinese Lexicon and Grammar[J]. 现代图书情报技术, 2016, 32(7-8): 129-136.
[7] Liu Tianyi,Bu Yi Zhao Danqun Huang Wenbin,Zhao Danqun,Huang Wenbin. Review of Citation-based Automatic Summarization Studies[J]. 现代图书情报技术, 2016, 32(5): 1-8.
[8] Liu Jian,Bi Qiang,Ma Zhuo. Assessment of Digital Library’s Micro-services: An Empirical Study[J]. 现代图书情报技术, 2016, 32(5): 22-29.
[9] Peng Hao, Xu Jian, Xiao Zhuo. Sentiment Analysis of Web Reviews Based on Comparative Sentence Extraction[J]. 现代图书情报技术, 2015, 31(12): 48-56.
[10] Chen Guo, Hu Changping. Research on the Structural Features of Keyword Network of Scientific Research Areas:An Empirical Study of LIS[J]. 现代图书情报技术, 2014, 30(7): 84-91.
[11] Xiong Yongjun, Yuan Xiaoyi. Design and Implementation of Automatic Monitoring System about Library Document Database Running State[J]. 现代图书情报技术, 2014, 30(7): 127-132.
[12] Wang Chuanqing, Bi Qiang. System Model of Digital Library Automatic Semantic Annotation Tool[J]. 现代图书情报技术, 2014, 30(6): 17-24.
[13] Wei Meng. Literature Recommendation Using Evolution Patterns[J]. 现代图书情报技术, 2014, 30(4): 20-26.
[14] Yang Chunlei, Dan Flickinger. ManGO:Grammar Engineering for Deep Linguistic Processing[J]. 现代图书情报技术, 2014, 30(3): 57-64.
[15] Qiu Junping, Fang Guoping. The Comparative Analysis of Natural Language Processing Research at Home and Abroad Based on Knowledge Mapping[J]. 现代图书情报技术, 2014, 30(12): 51-61.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938