Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (3): 46-50    DOI: 10.11925/infotech.1003-3513.2007.03.10
Current Issue | Archive | Adv Search |
Chinese Time Words and Numerals Automatic Segmentation Method Based on Rules
Gao Xiaoyun  Yang Jianlin
(Department of Information Management, Nanjing University, Nanjing 210093, China)
Download: PDF (642 KB)  
Export: BibTeX | EndNote (RIS)      

This paper firstly generalizes the formats of Chinese time words and numerals appearing in the text. Based on them, this paper then sets up a rule sets for recognition, proposes a method about Chinese time words and numerals based on rules and discusses its application value in competitive intelligence analysis as well as machine translation field at last.

Key wordsWord segmentation      Information extraction      Rule     
Received: 08 January 2007      Published: 25 March 2007



Corresponding Authors: Gao Xiaoyun     E-mail:
About author:: Gao Xiaoyun,Yang Jianlin

Cite this article:

Gao Xiaoyun,Yang Jianlin . Chinese Time Words and Numerals Automatic Segmentation Method Based on Rules. New Technology of Library and Information Service, 2007, 2(3): 46-50.

URL:     OR

4Regina Barzilay, Noemie Elhadad, and Kathleen R. McKeown. Sentence Ordering in Multidocument Summarization. In: Proceedings of the 1st Human Language Technology Conference. San Diego, California, 2001

[1] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[2] Wei Wei,Guo Chonghui,Xing Xiaoyu. Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[3] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[4] Xianlai Chen,Chaopeng Han,Ying An,Li Liu,Zhongmin Li,Rong Yang. Extracting New Words with Mutual Information and Logistic Regression[J]. 数据分析与知识发现, 2019, 3(8): 105-113.
[5] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[6] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[7] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[8] Qiang Lu,Zhenfang Zhu,Fuyong Xu,Qiangqiang Guo. Chinese Sentiment Classification Method with Bi-LSTM and Grammar Rules[J]. 数据分析与知识发现, 2019, 3(11): 99-107.
[9] Chengzhi Zhang,Zheng Li. Extracting Sentences of Research Originality from Full Text Academic Articles[J]. 数据分析与知识发现, 2019, 3(10): 12-18.
[10] He Yue,Feng Yue,Zhao Shupeng,Ma Yufeng. Recommending Contents Based on Zhihu Q&A Community: Case Study of Logistics Topics[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[11] Mu Dongmei,Jin Shan,Ju Yuanhong. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[12] Feng Guoming,Zhang Xiaodong,Liu Suhui. DBLC Model for Word Segmentation Based on Autonomous Learning[J]. 数据分析与知识发现, 2018, 2(5): 40-47.
[13] Ni Weijian,Sun Haohao,Liu Tong,Zeng Qingtian. An Unsupervised Approach to Optimize Chinese Word Segmentation on Domain Literature[J]. 数据分析与知识发现, 2018, 2(2): 96-104.
[14] He Yue,Wang Aixin,Feng Yue,Wang Li. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[15] Wang Xiaoyu,Li Bin. Automatically Segmenting Middle Ancient Chinese Words with CRFs[J]. 数据分析与知识发现, 2017, 1(5): 62-70.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938