Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (9): 49-52    DOI: 10.11925/infotech.1003-3513.2006.09.11
Current Issue | Archive | Adv Search |
Knowledge Extraction from Medical Literature Database Using Association Rule Mining
——Taking Four Anti-neoplastic Medicines as an Example
Zhang Han1   Lu Zhenyu2   Cui Lei
1(Department of Information Management and Information System(Medical), China Medical University, Shenyang 110001,China)
2(Department of Human Resource, the Second Affiliated Hospital of China Medical University, Shenyang 110004,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

This paper presents the work in extracting four anti-neoplastic medicines related mesh/subheading co-occurrence mode using association rule mining, and evaluates the quality of the results by comparing it with the PubMed literature and textbook. The evaluations shows that this method is fit for medical knowledge extraction. The knowledge extracted can be used to improve the sensitivity of literature retrieval and establish the knowledge database.

Key wordsKnowledge extraction      Association rule      Subject heading      Semantic relation     
Received: 30 May 2006      Published: 25 September 2006


Corresponding Authors: Zhang Han     E-mail:
About author:: Zhang Han,Lu Zhenyu,Cui Lei

Cite this article:

Zhang Han,Lu Zhenyu,Cui Lei . Knowledge Extraction from Medical Literature Database Using Association Rule Mining
——Taking Four Anti-neoplastic Medicines as an Example. New Technology of Library and Information Service, 2006, 1(9): 49-52.

URL:     OR

2Doddi S, Marathe A, Ravi SS et al.  Discovery of association rules in medical data.  Med Inform Internet Med, 2001,26(1):25-33
3Cimino J, Barnett GO. Automatic knowledge acquisition from MEDLINE. Methods Inf Med, 1993,32(2):120~130
4Powsner SM ,Riely CA,Barwick KW ,Marrow JS,Miller PL.Automated bibliographic retrieval based on current topics in hepatology:Hepatopix.   Comput Biomed Res, 1989(22):552-64
5邵峰晶,于忠清编著. 数据挖掘——原理与算法.北京:中国水利水电出版社,2003.91-98
6崔雷,李丹,冯博.  运用主题词/副主题词关联规则在医学文献检索系统中抽取知识的尝试. 情报学报,2005,24(6):657-662

[1] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[2] Tian Zhonglin,Wu Xu,Xie Xiaqing,Xu Jin,Lu Yueming. Real-time Analysis Model for Short Texts with Relationship Graph of Domain Semantics[J]. 数据分析与知识发现, 2020, 4(2/3): 239-248.
[3] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[4] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[5] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[6] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[7] He Yue,Feng Yue,Zhao Shupeng,Ma Yufeng. Recommending Contents Based on Zhihu Q&A Community: Case Study of Logistics Topics[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[8] He Yue,Wang Aixin,Feng Yue,Wang Li. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[9] Cui Jiawang,Li Chunwang. Identifying Semantic Relations of Clusters Based on Linked Data[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[10] Xie Jing,Wang Jingdong,Wu Zhenxin,Zhang Zhixiong,Wang Ying,Ye Zhifei. Building Semantic Enrichment Framework for Scientific Literature Retrieval System[J]. 数据分析与知识发现, 2017, 1(4): 84-93.
[11] Wei Xing,Hu Dehua,Yi Minhan,Zhu Qizhen,Zhu Wenjie. Extracting Disease-Gene-Drug Correlations Based on Data Cube[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[12] Liu Jianhua,Wang Ying,Zhang Zhixiong,Li Chuanxi. Extracting Semantic Knowledge from Plant Species Diversity Collections[J]. 数据分析与知识发现, 2017, 1(1): 37-46.
[13] Huang Mingxuan. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[14] Li Xiaoying,Xia Guanghui,Li Danya. Finding Semantic Relations Among Subject Indexed Papers[J]. 现代图书情报技术, 2016, 32(7-8): 87-93.
[15] Yuan Meng, Hongwei Wang. Extracting Product Feature and User Opinion from Chinese Reviews[J]. 现代图书情报技术, 2016, 32(2): 16-24.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938