Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (7/8): 22-26    DOI: 10.11925/infotech.1003-3513.2010.07-08.05
article Current Issue | Archive | Adv Search |
Application Research on Visualization Mining Methods of Topic Data Model
Zhou Ning  Chen Xuyi  Zeng Zhen
(Center for the Studies of Information Resources, Wuhan University, Wuhan 430072,China)
Download: PDF(1252 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

This paper dedicates to visualization mining methods of topic data model under eTOM(enhanced Telecom Operations Map) framework with some telecom company as the research object. It explores new theories and implementation methods in enterprises informationization. In the implementation process, business process analysis and visualization mining are achieved through Pajek and TreeMap. Detailed visualization mining implementation is discussed in human resources topic data model.

Key wordsTopic data model      Data mining      Visualization      Pajek      TreeMap     
Received: 04 May 2010      Published: 19 September 2010


Corresponding Authors: Zhou Ning     E-mail:
About author:: Zhou Ning Chen Xuyi Zeng Zhen

Cite this article:

Zhou Ning Chen Xuyi Zeng Zhen. Application Research on Visualization Mining Methods of Topic Data Model. New Technology of Library and Information Service, 2010, 26(7/8): 22-26.

URL:     OR

[1]  Enhanced Telecom Operations Map(eTOM). The Business Process Framework for the Information and Communications Services Industry [EB/OL]. [2010-03-25].
[2] Martin J. Information Engineering, Book I: Introduction[M]. New Jersey,USA:Prentice Hall,1989.
[3] Martin J.大转变:企业构建工程的七项原则[M]. 李东贤等译. 北京:清华大学出版社,1999.
[4]  Frawley W J, Shapiro  P G, Matheus C J.Knowledge Discovery in Databases: An Overview[J].Ai Magazine, 1992(13):213-228.
[5]  Hand D J, Mannila H,  Smyth P.Principles of Data Mining[M].Cambridge, MA:MIT Press, 2001.
[6]  Monk E, Wagner B.Concepts in Enterprise Resource Planning [M].2nd Edition. Boston, MA:Thomson Course Technology, 2006.
[7]  Networks / Pajek: Program for Large Network Analysis[EB/OL].   [2010-03-25].
[8]  Human-Computer Interaction Lab:TreeMap[EB/OL].[2010-03-25].
[9] 倪敏. 新网互联首推“双模”网络服务[J]. 互联网天地,2007(9):3.
[10] 牟晓隆.企业双模网络服务联盟成立[J]. 通信世界,2007(38B):24.

[1] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[2] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[3] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[4] Jiang Wu,Guanjun Liu,Xian Hu. An Overview of Online Medical and Health Research: Hot Topics, Theme Evolution and Research Content[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[5] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[6] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[7] Zhiqiang Wu,Zhongming Zhu,Wei Liu,Sili Wang. Research and Practice on the Extension of Knowledge Analysis and Visualization Function in CSpace[J]. 数据分析与知识发现, 2019, 3(3): 112-119.
[8] Ting Chen,Guopeng Li,Xiaomei Wang. Visualizing Appropriation of Research Funding with t-SNE Algorithm[J]. 数据分析与知识发现, 2018, 2(8): 1-9.
[9] Sinan Yang,Jian Xu,Pingping Ye. Review of Online Sentiment Visualization Techniques[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[10] Li Wang,Lixue Zou,Xiwen Liu. Visualizing Document Correlation Based on LDA Model[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
[11] Yongnan Li. Using Bayes Theory to Classify Counter Terrorism Intelligence[J]. 数据分析与知识发现, 2018, 2(10): 9-14.
[12] Dongmei Mu,Ping Wang,Danning Zhao. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[13] Zhongyi Hu,Chaoqun Wang,Jiang Wu. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[14] Siwei Jiang,Zhenping Xie,Meijie Chen,Ming Cai. Self-Explainable Reduction Method for Mixed Feature Data Modeling[J]. 数据分析与知识发现, 2017, 1(12): 92-100.
[15] Xiufang Xie,Xiaolin Zhang. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938