Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (9): 37-41    DOI: 10.11925/infotech.1003-3513.2010.09.07
article Current Issue | Archive | Adv Search |
Research of Term Semantic Hierarchy Induction for Domain-specific Chinese Text Information Processing
Ji Peipei1,2, Yan Xiaoyan1, Cen Yonghua3,4, Wang Lingyan1,2
1. The Chengdu Branch of National Science Library, Chinese Academy of Sciences, Chengdu 610041, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China;
4. Department of Information Management, Nanjing University, Nanjing 210093, China
Download: PDF(675 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

Term semantic relationship is a key step of Chinese text information processing.Through researches on some existing methods at home and abroad,a process of term semantic hierarchy induction is proposed, which uses multiple clustering method to get the whole hierarchy,and combine with comprehensive similarity caculation to get the label of classes.Finally,some experiments are done to verify its rationality.

Key wordsTerm      semantic      hierarchy      Domain-specific      text      information      processing      Term      relationship     
Received: 31 May 2010      Published: 26 October 2010



Cite this article:

Ji Peipei, Yan Xiaoyan, Cen Yonghua, Wang Lingyan. Research of Term Semantic Hierarchy Induction for Domain-specific Chinese Text Information Processing. New Technology of Library and Information Service, 2010, 26(9): 37-41.

URL:     OR

[1] Amsler R.A Taxonomy for English Nouns and Verbs . In:Proceedings of the 19th Annual Meeting on Association for Computational Linguistics,New York,America.1981:133-138.

[2] Calzolari N. Detecting Patterns in a Lexical Data Base .In:Proceedings of the 10th International Conference on Computational Linguistics,New York,America.1984:170-173.

[3] Hearst M. Automatic Acquisition of Hyponyms from Large Text Corpora .In:Proceedings of the 14th Conference on Computational Linguistics,New York,America.1992:539-545.

[4] Maedche A, Staab S. Discovering Conceptual Relations from Text . In:Proceedings of ECAI- 2000, Amsterdam, Holland.2000:321-325.

[5] Fotzo H N, Gallinari P. Learning Generation/Specialization Relations Between Concepts-Application for Automatically Building Thematic Document Hierarchies .In:Proceedings of RIAO, Paris, France.2004:322-335.

[6] Caraballo S A. Automatic Construction of a Hypernym-labeled Noun Hierarchy from Text . In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, Maryland, America.1999:120-126.

[7] Fisher D H. Knowledge Acquisition via Incremental Conceptual Clustering
[J].Machine Learning,1987,2(2):139-172.

[8] Cimiano P, Staab S, Tane J. Automatic Acquisition of Taxonomies from Text:FCA Meets NLP . In: Proceedings of International Workshop on Adaptive Text Extraction and Mining,Seattle,America. 2003:301-309.

[9] Obitko M, Snasel V, Smid J. Ontology Design with Formal Concept Analysis .In:Proceedings of CLA 2004, Ostrava, Czech.2004:111-119.

[10] Buitelaar P, Olejnik D, Sintek M. A Protégé Plug- In for Ontology Extraction from Text Based on Linguistic Analysis .In: Proceedings of the 1st European Semantic Web Symposium,Heraklion,Greece.2004:205-219.

[11] Velardi P, Fabriani P, Missikoff M. Using Text Processing Techniques to Automatically Enrich a Domain Ontology .In: Proceedings of International Conference on Formal Ontology in Information Systems,Ogunquit, America.2001:270-284.

[12] 裴炳镇, 陈晓明, 胡熠, 等. 一种建立中文概念分类关系的新算法
[J]. 计算机工程与应用 , 2004, 40(36):18-21.

[13] 何婷婷, 张小鹏. 特定领域本体自动构造方法
[J]. 计算机工程 , 2007,33(22):235-237.

[14] 温春, 石昭祥, 张亮. 中文领域本体概念层次获取方法对比研究
[J]. 计算机应用研究 , 2009,26(8):2847-2850,2884.

[15] 温春, 石昭祥, 杨国正. 一种利用度属性获取本体概念层次的方法
[J]. 小型微型计算机系统 , 2010,31(2):322-326.

[16] 万韬, 徐德智. 一种基于文档聚类的本体学习方法
[J]. 计算机与信息技术 , 2009(12):50-53.

[17] 龚静, 李安民. 一种改进的K-means中文文本聚类算法
[J]. 湖南工业大学学报 , 2008,22(2): 52-54.

[18] 孙秀娟. 基于遗传算法的K-means聚类算法分析研究 . 济南:山东师范大学, 2009.

[1] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] Ke Li,Yuya Sasaki. Analyzing Sentiment Distribution with Spatial-textual Data of Multi-dimensional Clustering[J]. 数据分析与知识发现, 2019, 3(7): 14-22.
[3] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[4] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[5] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[6] Junliang Yao,Xiaoqiu Le. Semantic Matching for Sci-Tech Novelty Retrieval[J]. 数据分析与知识发现, 2019, 3(6): 50-56.
[7] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[8] Jing Shi,Chenlu Li,Yuxing Qian,Liqin Zhou,Bin Zhang. Information Needs of Domestic and International HCQA Users ——An Empirical Analysis[J]. 数据分析与知识发现, 2019, 3(5): 1-10.
[9] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[10] Jingjing Pei,Xiaoqiu Le. Identifying Coordinate Text Blocks in Discourses[J]. 数据分析与知识发现, 2019, 3(5): 51-56.
[11] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[12] Yuemin Wu,Ganggui Ding,Bin Hu. Extracting Relationship of Agricultural Financial Texts with Attention Mechanism[J]. 数据分析与知识发现, 2019, 3(5): 86-92.
[13] Shijie Song,Yuxiang Zhao,Wenting Han,Qinghua Zhu. The Inhibition Effect of Health Literacy on Health Risk Under the Internet Environment: An Empirical Study of Chronic Diseases Based on CHNS Data[J]. 数据分析与知识发现, 2019, 3(4): 13-21.
[14] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[15] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938