Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (1): 52-56    DOI: 10.11925/infotech.1003-3513.2011.01.08
article Current Issue | Archive | Adv Search |
Query Expansion of Pseudo Relevance Feedback Based on Feature Terms Extraction and Correlation Fusion
Feng Ping1, Huang Mingxuan2
1. Electronic Information and Control Engineering Department, Guangxi University of Technology, Liuzhou 545006, China;
2. Department of Math and Computer Science, Guangxi College of Education, Nanning 530023, China
Download: PDF(411 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

Aiming at the term mismatch issues of existing information retrieval systems, a novel query expansion algorithm of pseudo relevance feedback is proposed based on feature terms extraction and correlation fusion. At the same time, a new computing method for weights of expansion terms is also given. The algorithm can extract feature terms related to original query from the n chapter top-ranked retrieved local documents, and then identify those feature terms as final expansion terms according to the frequency of each feature term appeared in the local documents and the correlation between each feature term and the entire original query for query expansion. The results of the experiment show that the method is effective,and it can enhance and improve the performance of information retrieval.

Key wordsCorrelation      Pseudo relevance feedback      Query expansion      Information retrieval     
Received: 25 November 2010      Published: 12 February 2011



Cite this article:

Feng Ping, Huang Mingxuan. Query Expansion of Pseudo Relevance Feedback Based on Feature Terms Extraction and Correlation Fusion. New Technology of Library and Information Service, 2011, 27(1): 52-56.

URL:     OR

[1] 黄名选,严小卫,张师超. 查询扩展技术进展与展望
[J]. 计算机应用与软件 ,2007, 24(11): 1-4,8.

[2] Yu S, Cai D, Wen J, et al. Improving Pseudo-Relevance Feedback in Web Information Retrieval Using Web Page Segmentation. In: Proceedings of the 12th World Wide Web Conference (WWW2003), Budapest, Hungary. 2003:11-18.

[3] Huang X, Huang Y R, Wen M, et al. Applying Data Mining to Pseudo-Relevance Feedback for High Performance Text Retrieval. In: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM’06), Hong Kong. 2006: 295-306.

[4] 黄名选,严小卫,张师超.基于矩阵加权关联规则挖掘的伪相关反馈查询扩展
[J]. 软件学报 , 2009,20(7):1854-1865.

[5] Cao G H, Nie J Y, Gao J F, et al. Selecting Good Expansion Terms for Pseudo-Relevance Feedback. In: Proceedings of SIGIR’08 Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (2008), Singapore.2008:243-250.

[6] Salton G, Buckley C. Improving Retrieval Performance by Relevance Feedback
[J]. Journal of the American Society for Information Science, 1990, 41(4):288-297.

[7] Xu J, Croft W B. Query Expansion Using Local and Global Document Analysis. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Zurich, Switzerland. 1996: 4-11.

[8] Hang C, Wen J R, Nie J Y, et al. Query Expansion by Mining User Logs
[J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4): 829-839.

[9] Fonseca B M, Golgher P B, Moura E S, et al. Discovering Search Engine Related Query Using Association Rules
[J]. Journal of Web Engineering, 2004, 2(4): 215-227.

[10] Zhang C, Qin Z, Yan X. Association-based Segmentation for Chinese-Crossed Query Expansion
[J]. IEEE Intelligent Informatics Bulletin, 2005, 5(1): 18-25.

[11] Manmatha R, Rath T. Using Models of Score Distributions in Information Retrieval. In: Proceedings of the 24th ACM Conference on Research and Development in Information Retrieval, New York, USA. 2001.

[12] Han J, Kamber M. Data Mining: Concepts and Techniques
[M]. 1st Edition. Morgan: Kaufmann Publishers,2000.

[1] Ming Yi,Tingting Zhang. Ranking Answer Quality of Popular Q&A Community[J]. 数据分析与知识发现, 2019, 3(6): 12-20.
[2] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[3] Sisi Gui,Xiaojuan Zhang,Xin Wang. Automatically Rating Query Ambiguity with Alt-Metrics[J]. 数据分析与知识发现, 2019, 3(2): 79-89.
[4] Haixia Sun,Lei Wang,Yingjie Wu,Weina Hua,Junlian Li. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[5] Daoping Wang,Zhongyang Jiang,Boqing Zhang. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[6] Pengmin Wu,Ting Chen,Xiaomei Wang. The Correlation Between Altmetrics and Citations[J]. 数据分析与知识发现, 2018, 2(6): 58-69.
[7] Jingqi Wang,Rui Li,Huayi Wu. The Evolution of Online Public Opinion Based on Spatial Autocorrelation[J]. 数据分析与知识发现, 2018, 2(2): 64-73.
[8] Dong Li,Shouchuan Tong,Jiang Li. Analyzing Interdisciplinarity and Scientists’ Academic Impacts[J]. 数据分析与知识发现, 2018, 2(12): 1-11.
[9] Yue He,Can Zhu. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[10] Chaofan Yang,Zhonghua Deng,Xin Peng,Bin Liu. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[11] Su Zhang. Information Consumption of Urban Chinese Residents: An Empirical Study Based on Dynamic Spatial Durbin Panel Model[J]. 数据分析与知识发现, 2017, 1(5): 52-61.
[12] Xing Wei,Dehua Hu,Minhan Yi,Qizhen Zhu,Wenjie Zhu. Extracting Disease-Gene-Drug Correlations Based on Data Cube[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[13] Xiaojuan Zhang, Yi Han. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[14] Mingxuan Huang. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[15] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938