Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (2): 34-41    DOI: 10.11925/infotech.1003-3513.2011.02.06
article Current Issue | Archive | Adv Search |
A Novel Framework Research on Integrating Disease Knowledge
Li Yazi1, Qian Qing1, Liu Zheng2, Fang An1, Hong Na1, Wang Junhui1
1. Institute of Medical Information,Chinese Academy of Medical Sciences, Beijing 100020,China;
2. National Science Library, Chinese Academy of Sciences, Beijing 100190, China
Download: PDF(708 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

The paper constructs and extends semantic network of UMLS as a top-level Ontology, proposes a UMLS-based framework which maps heterogeneous disease knowledge to the semantic type, and refines the semantic relationship in UMLS. Through the refunded relationship links the variety of disease knowledge,it implements the framework to integrate relevant disease knowledge by constructing the relation oriented of disease between disease, symptom, test, medicine, medical device, and medical regulation. Finally,it gives an example demonstrating the process of integrate disease knowledge.

Key wordsUMLS      Ontology      Semantic Web      Knowledge integration     
Received: 17 December 2010      Published: 25 March 2011



Cite this article:

Li Yazi, Qian Qing, Liu Zheng, Fang An, Hong Na, Wang Junhui. A Novel Framework Research on Integrating Disease Knowledge. New Technology of Library and Information Service, 2011, 27(2): 34-41.

URL:     OR

[1] Eysenbach G, Kohler C. Health-related Searches on the Internet
[J]. JAMA, 2004, 291 (24):23-30.

[2] Unified Medical Language System(UMLS) . .

[3] Chen Y, Perl Y, Geller J, et al. Analysis of a Study of the Users, Uses, and Future Agenda of the UMLS
[J].Journal of American Medical Informatics Association, 2007,14(2): 221-231.

[4] UMLS-Metathesaurus . .

[5] Schuyler P L, Hole W T, Tuttle M S, et al. The UMLS Metathesaurus: Epresenting Different Views of Biomedical Concepts
[J]. Bulletin of the Medical Library Association,1993, 81(2): 217-222.

[6] UMLS-Knowledge Sources . .

[7] Schulz S, Beisswanger E, Van den Hoek L, et al. Alignment of the UMLS Semantic Network with BioTop: Methodology and Assessment
[J]. Bioinformatics, 2009,25(12): 69-76.

[8] Fung K W, Bodenreider O, Aronson A R, et al. Combining Lexical and Semantic Methods of Inter-terminology Mapping Using the UMLS
[J]. Medical Informatics, 2007,12(1): 605-609.

[9] Semantic Technologies at FAO . .

[10] 苏晓路,钱平,颜蕴,等. 农业科技信息智能检索系统中的知识组织
[J]. 现代图书情报技术 ,2005(12):34-38.

[11] About STERNA . .

[12] Gudmundsson G, Brewington S D,McGovern T H, et al. A Catalogue of Bird Bones: An Exercise in Semantic Web Practice . In: Proceedings of International Congress, Tools for Identifying Biodiversity: Progress and Problems.2010:171-175.

[13] Neon Project . .

[14] Gómez-Pérez A, Suárez-Figueroa M C. Scenarios for Building Networks of Ontologies within the NeOn Methodology . In:Proceedings of the 5th International Conference on Knowledge Capture.2008:43-45.

[15] 疾病-维基百科,自由的百科全书 . .

[16] 症状_百度百科 . .

[17] Main Entry: Test . .

[18] 药物_互动百科 . .

[19] 医疗法规-医疗法规知识,医疗法规教程,医疗法规培训资料 . .

[20] 丁建民. 医疗器械定义的弊端及其对策 . (2009-01-12). .

[1] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[4] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[5] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[6] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[7] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[8] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[9] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[10] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[11] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[12] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[13] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[14] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[15] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938