Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (2): 87-93    DOI: 10.11925/infotech.1003-3513.2011.02.14
article Current Issue | Archive | Adv Search |
Real-Time Search Suggestions Based on the Clustering of the User’ s Query Intent
Zhou Zhicheng
Shanghai Institute of Technology Library, Shanghai 200235, China
Download: PDF(547 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

Aimed at the defects that the search engine offers too many results and is lack of considering the differences between the user’s personalities, this paper offers a way to give users real-time search suggestions of multi theme according to the user’s search intent in order to help the users describe the information in need more accurately, as well as narrow the gap between the query word and the user’s real intentions to increase the search efficiency. At the same time, it uses K-means to cluster users who are similar in their intent eigenvalue of resources categories, narrow the range of the nearest neighbor of the searching target, as well as to speed up the real-time response of the search suggestions. The experiment result shows that this method is practical.

Key wordsClustering      Search suggestions      Query intent      Search engine     
Received: 29 November 2010      Published: 25 March 2011



Cite this article:

Zhou Zhicheng. Real-Time Search Suggestions Based on the Clustering of the User’ s Query Intent. New Technology of Library and Information Service, 2011, 27(2): 87-93.

URL:     OR

[1] 巴特利 约翰.搜:通向世界的巨型引擎

[2] 陈冬林,聂规划.基于商品属性隐性评分的协同过滤算法研究
[J]. 计算机应用 ,2006,26(4):966-968.

[3] 吴健,董金祥.关于个性化网站的研究
[J]. 计算机应用研究 ,2000,17(9):21-22.

[4] Mecca G, Raunich S, Pappalardo A. A New Algorithm for Clustering Search Results
[J]. Data & Knowledge Engineering, 2007,62(3):504-522.

[5] Ruthven I. Re-examining the Potential Effectiveness of Interactive Query Expansion . In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,Toronto. 2003:213-220.

[6] Speretta M, Gauch S. Personalized Search Based on User Search Histories .In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, France. 2005:622-628.

[7] 王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐
[J]. 计算机应用 ,2007,27(5):1225-1227.

[8] 孙多.基于兴趣度的聚类协同过滤推荐系统的设计
[J]. 安徽大学学报:自然科学版 ,2007,31(5):19-22.

[9] 张字平,谢小林.基于AJAX技术实现搜索引擎中的搜索提示功能
[J]. 东华理工大学学报:自然科学版, 2008,31(1):81-84.

[10] Kwak M, Cho D S. Collaborative Filtering with Automatic Rating for Recommendation . In: Proceedings of ISIE 2001. New York: Industrial Electronics, 2001(1):625-628.

[11] Mun H, Ok S, Woo Y. An Automatic Rating Technique Based on XML Document
[J]. Computer Science, 2006,2347:424-427.

[12] Lee U, Liu Z, Cho J. Automatic Identification of User Goals in Web Search . In: Proceedings of the 14th International Conference on World Wide Web. New York: ACM Press, 2005:391-400.

[13] Lee H C, Lee S J, Chung Y J. A Study on the Improved Collaborative Filtering Algorithm for Recommender System . In: Proceedings of the 5th ACIS International Conference on Software Engineering Research, Management and Applications. Washington, DC, USA:IEEE Computer Society, 2007:297-304.

[14] 刘慧婷,倪志伟.客户行为的有效聚类
[J]. 计算机工程与应用 ,2010,46(4):12-24.

[15] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions
[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6):734-749.

[16] Zhang M. Enhancing Diversity in Top-N Recommendation . In: Proceedings of the 3rd ACM Conference on Recommender Systems. New York: ACM, 2009.

[17] MovieLens Data Sets . .

[1] Ke Li,Yuya Sasaki. Analyzing Sentiment Distribution with Spatial-textual Data of Multi-dimensional Clustering[J]. 数据分析与知识发现, 2019, 3(7): 14-22.
[2] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[3] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[4] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[5] Lianjie Xiao,Mengrui Gao,Xinning Su. An Under-sampling Ensemble Classification Algorithm Based on Fuzzy C-Means Clustering for Imbalanced Data[J]. 数据分析与知识发现, 2019, 3(4): 90-96.
[6] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[7] Tao Zhang,Haiqun Ma. Clustering Policy Texts Based on LDA Topic Model[J]. 数据分析与知识发现, 2018, 2(9): 59-65.
[8] Xiangdong Li,Fan Gao,Youhai Li. Categorizing Documents Automatically within Common Semantic Space[J]. 数据分析与知识发现, 2018, 2(9): 66-73.
[9] Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[10] Zhen Yang,Hongjun Wang,Yu Zhou. A Clustering Algorithm with Adaptive Cut-off Distance and Cluster Centers[J]. 数据分析与知识发现, 2018, 2(3): 39-48.
[11] Xiaoting Jia,Mingyang Wang,Yu Cao. Automatic Abstracting of Chinese Document with Doc2Vec and Improved Clustering Algorithm[J]. 数据分析与知识发现, 2018, 2(2): 86-95.
[12] Huixiang Xiong,Jiaxin Ye,Wuxuan Jiang. Clustering Social Tags with Improved DBSCAN Algorithm[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[13] Minghui Liu. Risk Assessment of Civil Aviation Terrorism Based on K-means Clustering[J]. 数据分析与知识发现, 2018, 2(10): 21-26.
[14] Tingting Wang,Man Han,Yu Wang. Optimizing LDA Model with Various Topic Numbers: Case Study of Scientific Literature[J]. 数据分析与知识发现, 2018, 2(1): 29-40.
[15] Yu Wang,Xiuxiu Li. Evaluating Business Reputation with E-Commerce Comments[J]. 数据分析与知识发现, 2017, 1(8): 59-67.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938