Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (3): 51-56    DOI: 10.11925/infotech.1003-3513.2011.03.08
Current Issue | Archive | Adv Search |
Survey of Ontology-based Semantic Retrieval in Folksonomy
He Jiyuan, Dou Yongxiang, Liu Dongsu
School of Economics and Management, Xidian University, Xi’an 710071, China
Download: PDF(418 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  For retrieval accuracy problems is due to the diversity and ambiguity of the tags created by users in Folksonomy system,this paper builds a model of Ontology-based Folksonomy semantic retrieval, and analyzes the key problems,such as building Ontology based on Folksonomy and using Ontology-built to implement semantic retrieval.Then current researches are classified and introduced in detail, and finally it makes a prospect for research trends.
Key wordsFolksonomy      Ontology      Semantic retrieval     
Received: 28 December 2010      Published: 05 May 2011



Cite this article:

He Jiyuan, Dou Yongxiang, Liu Dongsu. Survey of Ontology-based Semantic Retrieval in Folksonomy. New Technology of Library and Information Service, 2011, 27(3): 51-56.

URL:     OR

[1] Wal T V. Folksonomy [EB/OL].[2010-11-01].

[2] Sacco O, Bothorel C. Exploiting Semantic Web Techniques for Representing and Utilising Folksonomies [C]. In: Proceedings of the International Workshop on Modeling Social Media.New York,USA: ACM,2010.

[3] Newman R.Tag Ontology Writeup[EB/OL].[2010-11-01].

[4] Gruber T. Ontology of Folksonomy: A Mash-up of Apples and Orange [J]. International Journal on Semantic Web & Information Systems, 2007, 3(2).[2010-11-01].

[5] MOAT: Meaning of a Tag [EB/OL]. [2010-11-01].

[6] SCOT: Let’s Share Tags [EB/OL]. [2010-11-01].

[7] Zhang L, Wu X, Yu Y. Emergent Semantics from Folksonomies: A Quantitative Study[J]. Journal on Data Semantics, 2006(6):168-186.

[8] Mika P. Ontologies are Us: A Unified Model of Social Networks and Semantics[C]. In: Proceedings of the International Semantic Web Conference. 2005:522-536.

[9] Hotho A, Jschke R, Schmitz C, et al. Information Retrieval in Folksonomies: Search and Ranking[C]. In: Proceedings of the 3rd European Semantic Web Conference. 2006:411-426.

[10] Brin S, Page L. The Anatomy of a Large-Scale Hypertextual Web Search Engine[J]. Computer Networks and ISDN Systems, 1998,30(1-7):107-117.

[11] Schmitz P. Inducing Ontology from Flickr Tags[C]. In: Proceedings of the Collaborative Web Tagging Workshop at WWW’06, Edinburgh, UK. 2006.

[12] Van Damme C, Coenen T, Vandijck E. Turning a Corporate Folksonomy into a Lightweight Corporate Ontology[C]. In: Proceedings of the 11th International Conference on Business Information Systems,Innsbruck, Austria.2008:36-47.

[13] Limpens F, Gandon F, Buffa M. Collaborative Semantic Structuring of Folksonomies[C].In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.2009.

[14] Cattuto C, Benz D, Hotho A, et al. Semantic Grounding of Tag Relatedness in Social Bookmarking Systems[C]. In: Proceedings of the International Semantic Web Conference 2008.2008:615-631.

[15] Wu H, Zubair M, Maly K. Harvesting Social Knowledge from Folksonomies[C]. In: Proceedings of the 17th Conference on Hypertext and Hypermedia.2006:111-114.

[16] Tomuro N, Shepitsen A. Construction of Disambiguated Folksonomy Ontologies Using Wikipedia[C]. In: Proceedings of the 2009 Workshop on the People’s Web Meets NLP: Collaboratively Constructed Semantic Resources.2009:42-50.

[17] Specia L, Motta E. Integrating Folksonomies with the Semantic Web[C].In: Proceedings of the 4th European Semantic Web Conference.2007:624-639.

[18] Baldoni M, Baroglio C, Horváth A, et al. Folksonomies Meet Ontologies in ARSMETEO: From Social Descriptions of Artifacts to Emotional Concepts[C].In: Proceeding of the 2008 Conference on Formal Ontologies Meet Industry.2008:132-143.

[19] Han X, Shen Z, Miao C,et al. Folksonomy-based Ontological User Interest Profile Modeling and Its Application in Personalized Search[C]. In: Proceedings of the Active Media Technology. 2010:34-46.

[20] Gendarmi D, Lanubile F. Community-driven Ontology Evolution Based on Folksonomies[C]. In: Proceedings of the OTM Workshops 2006.2006:181-188.

[21] Van Damme C, Hepp M, Siorpaes K. FolksOntology: An Integrated Approach for Turning Folksonomies into Ontologies[C]. In: Proceedings of the ESWC 2007 Workshop on Bridging the Gap Between Semantic Web and Web 2.0,Innsbruck, Austria.2007:57-70.

[22] Lin H, Davis J, Zhou Y. An Integrated Approach to Extracting Ontological Structures from Folksonomies[C]. In: Proceedings of ESWC 2009.2009:654-668.

[23] Angeletou S. Semantic Enrichment of Folksonomy Tagspaces[C]. In: Proceedings of ISWC 2008.2008:889-894.

[24] Chen W, Cai Y, Leung H, et al. Generating Ontologies with Basic Level Concepts from Folksonomies[C]. In: Proceedings of International Conference on Computational Science.2010:573-581.

[25] Laniado D, Eynard D, Colombetti M. A Semantic Tool to Support Navigation in a Folksonomy[C].In: Proceedings the 18th Conference on Hypertext and Hypermedia.2009:153-154.

[26] Lee S S, Yong H S. OntoSonomy: Ontology-based Extension of Folksonomy[C]. In: Proceedings of International Workshop on Semantic Computing and Applications.2008:27-32.

[27] Passant A. Using Ontologies to Strengthen Folksonomies and Enrich Information Retrieval in Weblogs[C]. In: Proceedings of International Conference on Weblogs and Social Media.2007.

[28] Bindelli S, Criscione C, Curino C A, et al. Improving Search and Navigation by Combining Ontologies and Social Tags[C]. In: Proceedings of OTM Workshops 2008.2008:76-85.

[29] Angeletou S, Sabou M, Motta E. Folksonomy Enrichment and Search[C]. In: Proceedings of the 6th European Semantic Web Conference.2009:801-805.

[30] Pan J Z, Taylor S, Thomas E. Reducing Ambiguity in Tagging Systems with Folksonomy Search Expansion[C].In: Proceedings of the Semantic Web: Research and Applications.2009:669-683.
[1] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[4] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[5] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[6] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[7] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[8] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[9] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[10] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[11] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[12] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[13] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[14] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[15] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938