Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (7/8): 104-109    DOI: 10.11925/infotech.1003-3513.2011.07-08.17
Current Issue | Archive | Adv Search |
Topic Evolution Based on Seminal Document and Topic Model
Shan Bin, Li Fang
School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Download: PDF(797 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper presents a new method to infer the LDA topic evolution automatically based on seminal documents. The semantic distribution of the seminal documents is used to guide the successive model and link topics between consecutive time slices. The experiments are based on NIPS dataset and Chinese newswire of NPC and CPPCC,and the results show that the method can not only get the correct evolutions in various forms, but also avoid those related topics without evolution relationship.
Key wordsLDA      Topic evolution      Seminal document      Topic model     
Received: 11 May 2011      Published: 09 October 2011
: 

TP393

 

Cite this article:

Shan Bin, Li Fang. Topic Evolution Based on Seminal Document and Topic Model. New Technology of Library and Information Service, 2011, 27(7/8): 104-109.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.07-08.17     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V27/I7/8/104

[1] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. The Journal of Machine Learning Research,2003(3):993-1022.

[2] Wang X, McCallum A. Topic over Time: A Non-markov Continuous-time Model of Topical Trends . In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia,PA,USA.2006:424-433.

[3] Rosen-Zvi M,Griffiths T,Steyvers M,et al. The Author-topic Model for Authors and Documents . In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence,Banff,Canada.2004:487-494.

[4] Blei D M,McAuliffe J D. Supervised Topic Models . In: Proceeding of the 22nd Annual Conference on Neural Information Processing Systems.2008.

[5] Blei D M, LaffertyJ D. Dynamic Topic Model .In: Proceedings of the 23rd International Conference on Machine Learning,Pittsburgh,Pennsylvania.2006:113-120.

[6] Wei X,Sun J,Wang X. Dynamic Mixture Models for Multiple Time Series .In: Proceedings of the 20th International Joint Conference on Artificial Intelligence.2007: 2909-2914.

[7] 单斌,李芳.基于LDA话题演化研究方法综述[J]. 中文信息学报, 2010,24(6):43-49,68.

[8] Makkonen J. Investigations on Event Evolution in TDT . In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology.2003:43-48.

[9] 楚克明,李芳.基于LDA 话题关联的话题演化[J]. 上海交通大学学报, 2010,44(11):1501-1506.

[10] Nallapati R M,Ahmed A,Xing E P,et al. Joint Latent Topic Models for Text and Citations . In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2008:542-550.

[11] Alsumait L,Barbará D,Gentle J,et al. Topic Significance Ranking of LDA Generative Models . In: Proceeding of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part I.2009:67-82.

[12] GriffithsT L,Steyvers M. Finding Scientific Topics .In: Proceeding of the National Academy of Science of United States of America.2004,101:5228-5235.
[1] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[3] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[4] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[5] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[6] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[7] Hongqinling Wang,Zhichao Ba,Gang Li. Conversational Topic Intensity Calculation and Evolution Analysis of WeChat Group[J]. 数据分析与知识发现, 2019, 3(2): 33-42.
[8] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[9] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[10] Guijun Yang,Xue Xu,Fuqiang Zhao. Predicting User Ratings with XGBoost Algorithm[J]. 数据分析与知识发现, 2019, 3(1): 118-126.
[11] Yuemei Xu,Sining Lv,Lianqiao Cai,Xiaoya Zhang. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
[12] Yue He,Yue Feng,Shupeng Zhao,Yufeng Ma. Recommending Contents Based on Zhihu Q&A Community: Case Study of Logistics Topics[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[13] Tao Zhang,Haiqun Ma. Clustering Policy Texts Based on LDA Topic Model[J]. 数据分析与知识发现, 2018, 2(9): 59-65.
[14] Yanhua Xu,Yujie Miao,Lin Miao,Xueqiang Lv. Generating HSK Writing Essays with LDA Model[J]. 数据分析与知识发现, 2018, 2(9): 80-87.
[15] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn