Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (10): 24-28    DOI: 10.11925/infotech.1003-3513.2011.10.05
article Current Issue | Archive | Adv Search |
Research on Automatic Extraction of Web Sentiment Words
Zhang Qingliang, Xu Jian
School of Information Management, Sun Yat-Sen University, Guangzhou 510006, China
Download: PDF(476 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  To improve the efficiency of extracting sentiment words and building sentiment lexicon, the authors propose a method to extract a set of basic sentiment words, and then to calculate both the PMI-IR value between candidate word and the positive basic sentiment word set and the PMI-IR value between candidate words and the negative basic sentiment word set, to judge the orientation of a candidate word.Taking account of frequency, orientation, intensity and definiteness of words, computers are able to finish most of the work. It improves the efficiency and reduces cost of building sentiment lexicon. Experiment is processed on the dataset constituted with 71 061 reviews from 360buy and 1 736 reviews from Joyo. With the dataset, the method achieves a recall rate of 76.36%, a precision of 76.94%,and the precision of sentiment orientation is 62.70%.
Key wordsSentiment analysis      Sentiment orientation      PMI-IR      Sentiment lexicon     
Received: 28 July 2011      Published: 03 December 2011
: 

G250

 

Cite this article:

Zhang Qingliang, Xu Jian. Research on Automatic Extraction of Web Sentiment Words. New Technology of Library and Information Service, 2011, 27(10): 24-28.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.10.05     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V27/I10/24

[1] Turney P D, Littman M L. Measuring Praise and Critism: Inference of Semantic Orientation from Association[J]. ACM Tanslations on Information Systems,2003,21(4):315-346.

[2] 王素格. 基于Web的评论文本情感分类问题研究 .上海:上海大学, 2008.

[3] Tian P, Liu Y, Liu M. Research of Product Ranking Technology Based on Opinion Mining .In:Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation.2009:239-243.

[4] 董振东,董强. 知网 . .http://www.keenage.com/.

[5] Kamps J, Marx M, Mokken R J. Words with Attitude . In:Proceedings of the 1st International Conference on Global WordNet.2002:332-341.

[6] 朱嫣岚,闵锦,周雅倩,等. 基于HowNet的词汇语义倾向计算[J]. 中文信息学报, 2006,20(1):14-20.

[7] 路斌,万小军,杨建武.基于同义词词林的词汇褒贬计算 . 见: 中国计算技术与语言问题研究——第七届中文信息处理国际会议论文集 . 中国,武汉:中国中文信息学会, 2007.

[8] Dave K, Lawrence S, Pennock D M. Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews . In:Proceedings of the 12th International Conference on World Wide Web.2003: 519-528.

[9] 彭学仕,孙春华.面向倾向性分析的基于词聚类的基准词选择方法[J]. 计算机应用研究, 2011,28(1):114-116.

[10] 王素格,李德玉,魏英杰,等. 基于同义词的词汇情感倾向判别方法[J]. 中文信息学报, 2009,23(5): 68-74.

[11] Turney P D. Mining the Web for Synonyms: PMI-IR Versus LSA on TOEFL .In:Proceedings of the 12th European Conference on Machine Learning, Freiburg, Germany.2001:491-502.

[12] 亚马逊公司.卓越网.http://www.amazon.cn/.

[13] 北京当当网信息技术有限公司.当当网.http://www.dangdang.com/.

[14] 北京京东世纪商贸有限公司.京东商城.http://www.360buy.com/.

[15] 阿里巴巴集团.淘宝网.http://www.taobao.com/.

[16] Abulaish M, Jahiruddin, Doja M N, et al. Feature and Opinion Mining for Customer Review Summarization . In:Proceeding of the 3rd International Conference on Pattern Recognition and Machine Intelligence. 2009:219-224.

[17] Hu M, Liu B. Mining Opinion Features in Customer Reviews . In:Proceedings of the 19th National Conference on Artificial Intelligence. 2004:755-760.
[1] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[2] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[3] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[4] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[5] Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[6] Sinan Yang,Jian Xu,Pingping Ye. Review of Online Sentiment Visualization Techniques[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[7] Tingting Wang,Kaiping Wang,Guijie Qi. Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
[8] Yang Zhao,Qiqi Li,Yuhan Chen,Wenhang Cao. Examining Consumer Reviews of Overseas Shopping APP with Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(11): 19-27.
[9] Yue He,Can Zhu. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[10] Hongli Zhang,Jiying Liu,Sinan Yang,Jian Xu. Predicting Online Users’ Ratings with Comments[J]. 数据分析与知识发现, 2017, 1(8): 48-58.
[11] Ge Gao,Junmei Luo,Yu Wang. Analyzing Textual Sentiment Based on HNC Theory[J]. 数据分析与知识发现, 2017, 1(8): 85-91.
[12] Huanrong Shou,Shuqing Deng,Jian Xu. Detecting Online Rumors with Sentiment Analysis[J]. 数据分析与知识发现, 2017, 1(7): 44-51.
[13] Chuanming Yu,Bolin Feng,Lu An. Sentiment Analysis in Cross-Domain Environment with Deep Representative Learning[J]. 数据分析与知识发现, 2017, 1(7): 73-81.
[14] Xinhui Dun,Yunqiu Zhang,Kaixi Yang. Fine-grained Sentiment Analysis Based on Weibo[J]. 数据分析与知识发现, 2017, 1(7): 61-72.
[15] Weifang Wu,Baojun Gao,Haixia Yang,Hanlin Sun. The Impacts of Reviews on Hotel Satisfaction: A Sentiment Analysis Method[J]. 数据分析与知识发现, 2017, 1(3): 62-71.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn