Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (5): 1-6    DOI: 10.11925/infotech.1003-3513.2012.05.01
Current Issue | Archive | Adv Search |
Overview about the Methods of Cross-system User Modeling for Personalization Service
Niu Yazhen1,2, Zhu Zhongming1
1. The Lanzhou Branch of National Science Library, Chinese Academy of Sciences, Lanzhou 730000, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(957 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper summarizes and analyzes the main methods of cross-system user modeling. The first one is a top-down approach, involving standard Ontologies or unified user models; the second research direction is a bottom-up approach based on mappings between different user model representations; the third one is distributed and open user modeling, based on the Social Web, interoperability and LOD. Finally,it points out the tendency of the cross-system user modeling.
Key wordsSemantic Web      Cross-system user modeling      User model      Social Web      Distributed      Interoperability      Linked data      Linked open data     
Received: 21 March 2012      Published: 24 July 2012



Cite this article:

Niu Yazhen, Zhu Zhongming. Overview about the Methods of Cross-system User Modeling for Personalization Service. New Technology of Library and Information Service, 2012, 28(5): 1-6.

URL:     OR

[1] Abel F, Araújo S, Gao Q,et al. Analyzing Cross-system User Modeling on the Social Web[C]. In:Proceedings of the 11th International Conference on Web Engineering. 2011:28-43.

[2] Mehta B, Niederée C, Stewart A,et al. Towards Cross-system Personalization[C]. In: Proceedings of the 3rd International Conference on Universal Access in Human-Computer Interaction,USA. 2005:119-123.

[3] Viviani M, Bennani N, Egyed-Zsigmond E. A Survey on User Modeling in Multi-application Environments[C]. In: Proceedings of the 3rd International Conference on Advances in Human-Oriented and Personalized Mechanisms, Technologies and Services (CENTRIC). 2010: 111-116.

[4] Razmerita L, Angehrn A, Maedche A. Ontology-based User Modeling for Knowledge Management Systems[C]. In: Proceedings of the 9th International Conference on User Modeling. 2003:213-217.

[5] Niederée C, Stewart A, Mehta B, et al. A Multi-Dimensional, Unified User Model for Cross-system Personalization[C]. In: Procceedings of the AVI 2004 Workshop on Environments for Personalized Information Access, Gallipoli, Italy.2004: 34-54.

[6] Heckmann D, Schwartz T, Brandherm B, et al. GUMO-The General User Model Ontology[C]. In: Proceedings of the 10th International Conference on User Modeling. 2005:428-432.

[7] Heckmann D. Introducing “Situational Statements” as an Integrating Data Structure for User Modeling, Context-Awareness and Resource-Adaptive Computing[C].In:Proceedings of the 11th GI-Workshop on Adaptivity and User Modeling in Interactive Software Systems (ABIS-2003), Karlsruhe,Germany.2003:283-286.

[8] Hebeler J, Fisher M, Blace R, et al. Semantic Web Programming[M]. Wiley, 2009.

[9] Van Der Sluijs K, Houben G J. Towards a Generic User Model Component[J/OL]. [2012-03-01].

[10] González G, López B, De La Rosa J L. A Multi-agent Smart User Model for Cross-domain Recommender Systems[C]. In: Proceedings of Beyond Personalization: The Next Stage of Recommender Systems Research. 2005.

[11] González G, López B, De La Rosa J L. The Emotional Factor: An Innovative Approach to User Modelling for Recommender Systems[J/OL]. [2012-03-01].

[12] Miller G A. WordNet: A Lexical Database for English[J]. Communications of the ACM,1995, 38(11):39-41.

[13] Abel F, Herder E, Houben G J, et al. Cross-system User Modeling and Personalization on the Social Web[J]. User Modeling and User-adapted Interaction:Special Issue on Personalization in Social Web Systems,2011, 22(3):1-42.

[14] Mitchell-Wong J, Kowalczyk R, Roshelova A, et al. Opensocial: From Social Networks to Social Ecosystem[C]. In: Proceedings of Digital EcoSystems and Technologies Conference. 2007: 361-366.

[15] Recordon D, Reed D. OpenID 2.0: A Platform for User-centric identity Management[C]. In: Proceedings of the 2nd ACM Workshop on Digital Identity Management. ACM, 2006: 11-16.

[16] Hammer-Lahav E. The OAuth 1.0 Protocol[EB/OL]. [2012-03-01].

[17] Ermalai I, Dragulescu B. The Usefulness and Functionality of Microformats in a Particular ELearning System[C]. In: Proceedings of 2010 International Joint Conference on Computational Cybernetics and Technical Informatics (ICCC-CONTI). 2010: 387-390.

[18] Brickley D, Miller L. FOAF Vocabulary Specification 0.91[EB/OL]. [2012-03-01].

[19] Breslin J, Bojars U, Passant A, et al. SIOC: Content Exchange and Semantic Interoperability Between Social Networks[EB/OL]. [2012-03-01].

[20] Carmagnola F. Handling Semantic Heterogeneity in Interoperable Distributed User Models[A].//Kuflik T,Berkovsky S, Carmagnola F,et al.Advances in Ubiquitous User Modelling[M].Berlin, Heidelberg:Springer-Verlag,2009:20-36.

[21] Ye N, Zhao Y L, Zhao X, et al. A Linked Data-driven Solution to User Modeling in a Multi-application Environment[C]. In: Proceedings of the 2nd International Conference on Software Engineering and Service Science (ICSESS).IEEE, 2011: 872-876.

[22] Bizer C, Cyganiak R, Heath T. How to Publish Linked Data on the Web[J]. Computer and Information Science, 2007, 20:2008.
[1] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[2] Zhihong Shen,Chang Yao,Yanfei Hou,Linhuan Wu,Yuepeng Li. Big Linked Data Management: Challenges, Solutions and Practices[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[3] Jiawang Cui,Chunwang Li. Identifying Semantic Relations of Clusters Based on Linked Data[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[4] Ying Jiang,Jing Zhang,Lingxuan Zhu. Extracting and Visualizing Knowledge Graph Schema from Linked Data with Cytoscape Platform[J]. 数据分析与知识发现, 2017, 1(3): 29-37.
[5] Qiangbing Wang,Chengzhi Zhang. Constructing Users Profiles with Content and Gesture Behaviors[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[6] Yunfei Qi,Yuxiang Zhao,Qinghua Zhu. Linked Data for Mobile Visual Search System of Digital Library[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[7] Zhu Ling,Xue Chunxiang,Zhang Chengzhi,Fu Zhu. User Tags and Microblog Posts: Case Study of Sina Weibo[J]. 现代图书情报技术, 2016, 32(3): 18-24.
[8] Zhao Yiping,Bi Qiang. Using Linked Data to Retrieve Similar Documents from the Academic Resource Websites[J]. 现代图书情报技术, 2016, 32(3): 41-49.
[9] Lixin Xia,Ying Tan. Analysis and Visualization of the LOD Network Structure[J]. 现代图书情报技术, 2016, 32(1): 65-72.
[10] Guo Zhenying, Zhao Wenbing, Wei Yuhui. Construction of Linked Data with Lightweight Book Bibliography Ontology[J]. 现代图书情报技术, 2015, 31(7-8): 139-143.
[11] Gao Jinsong, Cheng Ya, Liang Yanqi. Ontology Matching for Linked Data Set[J]. 现代图书情报技术, 2015, 31(6): 33-40.
[12] Liang Yiduo, Zhai Jun. Research on Application of Ontology Reasoning in Linkage Discovery of Linked Data[J]. 现代图书情报技术, 2015, 31(4): 87-95.
[13] Zhuo Keqiu, Yu Wei, Su Xinning. Parallel Implementing Bursty Events Detection Using MapReduce[J]. 现代图书情报技术, 2015, 31(2): 46-54.
[14] Zhao Huaming. Research and Implementation of Textual Clustering in Distributed Environment[J]. 现代图书情报技术, 2015, 31(1): 82-88.
[15] Gao Jinsong, Liang Yanqi, Li Ke, Xiao Lian, Zhou Ximan. E-commerce Credit Information Service Model for Linked Data[J]. 现代图书情报技术, 2014, 30(6): 8-16.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938