Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (7): 13-18    DOI: 10.11925/infotech.1003-3513.2012.07.03
Current Issue | Archive | Adv Search |
SKE Key Technologies and Services for Knowledge Discovery
Song Wen1, Huang Jinxia1, Liu Yi2, Tang Yijie2
1. National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
2. The Wuhan Branch of National Science Library, Chinese Academy of Sciences, Wuhan 430071, China
Download: PDF(1018 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  Subject Knowledge Environment(SKE) is a tool to build the knowledge environments and academic communities embedded in the user scientific workflows. Based on a research Ontology and a domain Ontology as the knowledge organization models, and the application on semantic Web technologies and reasoning rules, SKE has the functionalities on information management, knowledge organization and knowledge discovery, while realizes the user customizations on Ontology reusing, system management and data reusing. SKE is currently in the services on building the XKEs, mainly used in the constructions of specific subject knowledge environment, research community, project information environment and collaborative research platform of major research groups.
Key wordsKnowledge discovery      Knowledge management      Subject knowledge environment      Ontology     
Received: 18 May 2012      Published: 11 October 2012



Cite this article:

Song Wen, Huang Jinxia, Liu Yi, Tang Yijie. SKE Key Technologies and Services for Knowledge Discovery. New Technology of Library and Information Service, 2012, 28(7): 13-18.

URL:     OR

[1] Arms W Y, Larsen R L. The Future of Scholarly Communication:Building the Infrastructure for Cyberscholarship[R/OL]. [2010-05-15].

[2] 张晓林. 重新认识知识过程和知识服务[J]. 图书情报工作 ,2009,53(1):6-8.(Zhang Xiaolin. Revisit Knowledge Processes and Knowledge Services[J]. Library and Information Service, 2009, 53(1):6-8.)

[3] Berners-Lee T, Hendler J, Lassila O. The Semantic Web:A New Form of Web Content That is Meaningful to Computers Will Unleash a Revolution of New Possibilities[J/OL]. Scientific American Special Online Issue, 2002:24-30.

[4] W3C. Linked Data[EB/OL].[2012-04-20].

[5] VIVO. An Interdisciplinary Network[EB/OL]. [2012-04-02].

[6] Harvard Catalyst Profiles[DB/OL]. [2012-04-20].

[7] 孙坦.近两年国外知识本体研究的进展[J]. 图书馆建设 ,2008(8):79.(Sun Tan. Process in the Study on Domain Ontology in 2006-2007[J]. Library Development,2008(8):79.)

[8] 黄金霞,宋文,刘峥,等. 学科领域本体的一个实证研究——兼论杜威分类法与中图分类法的再次比较[J]. 图书馆杂志 ,2010(7):21-25.(Huang Jinxia, Song Wen, Liu Zheng, et al. Empirical Analysis on the Construction of Domain Ontology ——And Re-comparative Research on DDC & Chinese Library Classification[J].Library Journal, 2010(7):21-25.)

[9] W3C Member Submission. SWRL:A Semantic Web Rule Language Combining OWL and RuleML[EB/OL].[2012-04-20].

[10] 黄金霞, 景丽. 面向VIVO本体的数据摄取实用工具[J]. 现代图书情报技术 ,2011(2):16-20.(Huang Jinxia, Jing Li. An Data Ingest Tool for VIVO Ontology[J].New Technology of Library and Information Service, 2011(2):16-20.)

[11] 陶俊, 孙坦, 刘峥. 关联数据映射语言:R2R[J]. 中国图书馆学报 ,2012,38(3):100-109.(Tao Jun, Sun Tan, Liu Zheng. Linked Dataset Mapping Language:R2R[J].Journal of Library Science in China, 2012,38(3):100-109.)
[1] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Juhua Wu,Yu Wang,Ming Li,Shaoyun Cai. Knowledge Discovery of Online Health Communities with Weighted Knowledge Network[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[6] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[7] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[8] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[9] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[10] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[11] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[12] Yuefen Wang,Zhu Fu,Peng Wu. Tech-Framework for Semantic Knowledge Management in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 2-10.
[13] Zhu Fu,Yuxing Jiang,Yuefen Wang. Modeling Conceptual Design Process for Dynamic Knowledge Management and Reuse[J]. 数据分析与知识发现, 2018, 2(2): 20-28.
[14] Xin Wang,Wen’gang Feng. Review of Techniques Detecting Online Extremism and Radicalization[J]. 数据分析与知识发现, 2018, 2(10): 2-8.
[15] Zhiqiang Zhang,Shaoping Fan,Xiujuan Chen. Biomedical Informatics Studies for Knowledge Discovery in Precision Medicine[J]. 数据分析与知识发现, 2018, 2(1): 1-8.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938