Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (3): 7-12    DOI: 10.11925/infotech.1003-3513.2007.03.02
article Current Issue | Archive | Adv Search |
Construction and Evolution of Discipline Domain Ontology
Du Xiaoyong  Ma Wenfeng  Wu Wenjuan
1(School of Information, Renmin University of China, Beijing 100872, China)
2(Library of Renmin University of China, Beijing 100872,China)
3(Key Laboratory of Data Engineering and Knowledge Engineering, Ministry of
Education, Beijing 100872, China)
Download: PDF (439 KB)  
Export: BibTeX | EndNote (RIS)      

This paper briefly surveys the state-of-the-art of construction and evolution of domain Ontology. It describes the process to construct a primary version of economics Ontology from existing Chinese classified thesaurus, and the approach to evolve the primary version of the domain Ontology. The key techniques of Ontology evolution include creating a dataset for Ontology learning, determining the candidate keywords, and discovering the concepts and relationship of the domain Ontology.

Key wordsOntology      Domain Ontology      Discipline domain Ontology      Domain Ontology evolution     
Received: 10 January 2007      Published: 25 March 2007



Corresponding Authors: Du Xiaoyong     E-mail:
About author:: Du Xiaoyong,Ma Wenfeng,Wu Wenjuan

Cite this article:

Du Xiaoyong,Ma Wenfeng,Wu Wenjuan . Construction and Evolution of Discipline Domain Ontology. New Technology of Library and Information Service, 2007, 2(3): 7-12.

URL:     OR

3Noy N F,McGuinness D L. Ontology Development 101: A Guide to Creating Your First Ontology. Feb.08,2006)
4Corcho O,Fernandez-Lopez M,Gomez-Perez A.Methodologies, Tools and Languages for Building Ontologies. Where is Their Meeting point? Data & Knowledge Engineering,2003,46(1):41-64
13Shamsfard M, Barforoush A A. Learning Ontologies from Natural Language Texts. Int’l Journal Human-Computer Studies, 2004,60(1):17-63
14Agirre E, Ansa O, Hovy E, Martinez D. Enriching Very Large Ontologies Using the WWW. In: Staab S, Maedche A, eds. Proc. of the ECAI 2004 Workshop on Ontology Learning.2000. May.30,2006)
15Xu F, Kurz D, Piskorski J, Schmeier S. A Domain Adaptive Approach to Automatic Acquisition of Domain Relevant Terms and Their Relations with Bootstrapping. In: Proc.of the LREC 2002. May.30,2006)
16Missikoff M, Navigli R, Velardi P. Integrated Approach for Web Ontology Learning and Engineering.IEEE Computer, 2002,35(11):60-63
17Navigli R, Velardi P, Gangemi A. Ontology Learning and Its Application to Automated Terminology Translation. IEEE Intelligent Systems, 2003,18(1):22-31
18Daille B. Study and Implementation of Combined Techniques for Automatic Extraction of Terminology. In: Proc. of the ACL’94 Workshop "The Balancing Act: Combining Symbolic and Statistical Approaches to Language".1994. Jun.3,2006)
19Velardi P, Fabriani P, Missikoff M. Using Text Processing Techniques to Automatically Enrich a Domain Ontology. In: Proc. of the FOIS. New York: ACM Press, 2001,270-284
20Chen W L, Zhu J B, Yao T S. Automatic Learning Field Words by Bootstrapping. In: Proc. of the JSCL. Beijing: Tsinghua University Press, 2003.67-72
21Zheng J H, Lu J L. Study of an Improved Keywords Distillation Method. Computer Engineering, 2005,31(18):194-196
22Du B, Tian H F, Wang L, Lu R Z. Design of Domain-specific Term Extractor Based on Multi-strategy. Computer Engineering,2005,31(14):159-160
23Hearst M A. Automatic Acquisition of Hyponyms from Large Text Corpora. In: Bourigault D, ed. Proc. of the COLING.1999,539-545. Jun.3,2006)
24Fisher D H. Knowledge Acquisition via Incremental Conceptual Clustering. Machine Learning, 1987,2(2):139-172
25Bisson G. Learning in FOL with a Similarity Measure. In: Pinkas G, Dechter R, eds. Proc. of the AAAI. San Francisco: Morgan Kaufmann Publishers, 1992.82-87
26Emde W, Wettschereck D. Relational Instance-based Learning. In: Saitta L, ed. Proc. of the ICML'96. San Francisco: Morgan Kaufmann Publishers, 1996.122-130
27Faure D, Nedellec C. A Corpus-based Conceptual Clustering Method for Verb Frames and Ontology Acquisition. In: Velardi P, ed. Proc. of the LREC Workshop on Adapting Lexical and Corpus Resources to Sublanguages and Applications. Granada: LREC, 1998.5-12
28Maedche A, Staab S. Discovering Conceptual Relations from Text. In: Horn W, ed. Proc. of the ECAI 2000.Amsterdam: IOS Press,2000.321-325
29Maedche A, Staab S. Ontology Learning for the Semantic Web. IEEE Intelligent System, Special Issue on the Semantic Web, 2001,16(2):72-79
30Nakaya N, Kurematsu M, Yamaguchi T. A Domain Ontology Development Environment Using a MRD and Text Corpus. Proc.Fifth Joint Conference on Knowledge-based Software Engineering, Frontiers in Artificial Intelligence and Applications. IOS press, 2002,242-251. Jun.3,2006)
31Kavalec M, Svátek V.A Study on Automated Relation Labelling in Ontology Learning. In: Buitelaar P,Cimiano P, Magnini B, eds. Ontology Learning from Text: Methods, Evaluation and Applications. Amsterdam: IOS Press,2005. Jun.3,2006)

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[15] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938