Please wait a minute...
New Technology of Library and Information Service  2012, Vol. Issue (11): 47-52    DOI: 10.11925/infotech.1003-3513.2012.11.08
Current Issue | Archive | Adv Search |
Study on Named Entity Recognition Based on Cascaded Model for Field of Defense
Gao Qiang, You Hongliang
China Defense Science & Technology Information Center, Beijing 100142, China
Download: PDF(617 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper first studies rule-based method and the statistic-based method of named entity,analyzes the strengths and weaknesses of the two methods.Then it presents a cascaded model for named entity recognition, which combines of the rule-based method and the statistic-based method.In the named entity recoginzation experiment for field of defense,the F value is more than 89%.
Key wordsNamed entity      Named entity recognition      Information extraction      Cascaded model      Conditional random fields     
Received: 14 October 2012      Published: 06 February 2013
:  TP391  

Cite this article:

Gao Qiang, You Hongliang. Study on Named Entity Recognition Based on Cascaded Model for Field of Defense. New Technology of Library and Information Service, 2012, (11): 47-52.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2012.11.08     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2012/V/I11/47

[1] Roman Y, Ralph G. NYU: Description of the Proteus/PET System as Used for MUC-7 ST[C]. In: Proceedings of the 7th Message Understanding Conference (MUC-7), Fairfax, Virginia.1998.
[2] Fukumoto J, Shimohata M, Masui F. OKI Electric Industry: Description of the OKI System as Used for MET-2[C]. In: Proceedings of the 7th Message Understanding Conference (MUC-7), Fairfax, Virginia.1998.
[3] General Architecture for Text Engineering[EB/OL].[2012-07-15].http://gate.ac.uk/.
[4] Adam B, Stephen A. A Maximum Entropy Approach to Natural Language Processing[J]. Computational Linguistics,1996,22(1):39-71.
[5] Rabiner L R, Juang B H. An Introduction to Hidden Markov Models[J]. IEEE ASSP Magazine, 1986, 3(1):4-16.
[6] 赵晓凡,赵丹,刘永革. 利用CRF实现中文人名性别的自动识别[J]. 微电子学与计算机, 2011,28(10):122-128. (Zhao Xiaofan,Zhao Dan,Liu Yongge. The Automatic Gender Recognition of Chinese Name Using Conditional Random Fields[J]. Microelectronics & Computer, 2011,28(10):122-128.)
[7] Chieu H L,Teow L N. Combining Local and Non-Local Information with Dual Decomposition for Named Entity Recognition from Text[C]. In: Proceedings of the 15th International Conference on Information Fusion (FUSION), Singapore. 2012:231-238.
[8] Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]. In: Proceedings of the 18th International Conference on Machine Learning. 2001:282-289.
[9] Developing Language Processing Components with GATE Version 7 (a User Guide)[EB/OL].[2012-07-15].http://gate.ac.uk/sale/tao/split.html.
[10] 王昊. 基于层次模式匹配的命名实体识别模型[J]. 现代图书情报技术,2007 (5):62-68. (Wang Hao. Named Entity Extraction Model Based on Hierarchical Pattern Matching[J]. New Technology of Library and Information Service, 2007 (5):62-68.)
[11] 万如.中文机构名的识别研究[D]. 大连:大连理工大学,2008.(Wan Ru.The Research of Chinese Organization Name Recogintion[D]. DaLian:Dalian University of Technology,2008.)
[1] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[2] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[3] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[4] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[5] Dongmei Mu,Shan Jin,Yuanhong Ju. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[6] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[7] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[8] Xiaoyu Wang,Bin Li. Automatically Segmenting Middle Ancient Chinese Words with CRFs[J]. 数据分析与知识发现, 2017, 1(5): 62-70.
[9] Dongbo Wang,Yi Wu,Wenhao Ye,Ruilun Liu. Extracting Events of Food Safety Emergencies with Characteristics Knowledge[J]. 数据分析与知识发现, 2017, 1(3): 54-61.
[10] He Huixin,Liu Lijuan. A Scientific Research Object Labeling System Based on Active earning[J]. 现代图书情报技术, 2016, 32(3): 67-73.
[11] Sui Mingshuang,Cui Lei. Extracting Chemical and Disease Named Entities with Multiple-Feature CRF Model[J]. 现代图书情报技术, 2016, 32(10): 91-97.
[12] Yufeng Duan,Sisi Huang. Information Extraction from Chinese Plant Species Diversity Description Text[J]. 现代图书情报技术, 2016, 32(1): 87-96.
[13] Ren Yuwei, Lv Xueqiang, Li Zhuo, Xu Liping. Named Entity Recognition from Search Log[J]. 现代图书情报技术, 2015, 31(6): 49-56.
[14] Liu Wei, Wang Xing, Song Peiyan. A Noise Cleaning Method for Synonym Extraction Results[J]. 现代图书情报技术, 2015, 31(6): 64-70.
[15] Jiang Chuntao. Automatic Annotation of Bibliographical References in Chinese Patent Documents[J]. 现代图书情报技术, 2015, 31(10): 81-87.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn