Please wait a minute...
New Technology of Library and Information Service  2012, Vol. Issue (12): 79-84    DOI: 10.11925/infotech.1003-3513.2012.12.14
Current Issue | Archive | Adv Search |
Research of a Collaborative Filtering Algorithm Based on Harmony Search
Wang Huaqiu
School of Computer Science, Chongqing University of Technology, Chongqing 400054, China
Download: PDF(830 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  The traditional similarity algorithm of collaborative filteringis modified in this paper. In order to find an optimal similarity function, the paper presents harmony search algorithm with parameters optimization to find the optimal weights vector of similarity function. To improve the speed of recommendation, harmony search algorithm is no longer used for the calculation of the recommendation after finding the optimal similarity function. The validation experiments show that the proposed algorithm improves prediction accuracy and coverage so as to provide better recommendation. And the proposed algorithm can more quickly obtain the nearest neighbor users of the target user, which can accelerate the recommended speed.
Key wordsCollaborative filtering      Similarity function      Weights vector      Harmony search algorithm     
Received: 28 October 2012      Published: 12 March 2013
:  TP311  

Cite this article:

Wang Huaqiu. Research of a Collaborative Filtering Algorithm Based on Harmony Search. New Technology of Library and Information Service, 2012, (12): 79-84.

URL:     OR

[1] Renda M E,Straccia U. A Personalized Collaborative Digital Library Environment: A Model and an Application[J].Information Processing and Management, 2005, 41(1): 5-21.
[2] Porcel C, Viedma H E. Dealing with Incomplete Information in a Fuzzy Linguistic Recommender System to Disseminate Information in University Digital Libraries[J]. Knowledge-based Systems, 2009, 23 (1): 32-39.
[3] 许海玲,吴潇,李晓东,等. 互联网推荐系统比较研究[J]. 软件学报, 2009, 20(2): 350-362.(Xu Hailing, Wu Xiao, Li Xiaodong,et al. Comparison Study of Internet Recommendation System[J]. Journal of Software, 2009, 20(2): 350-362.)
[4] Sarwar B, Karypis G, Konstan J,et al. Item-based Collaborative Filtering Recommendation Algorithms[C]. In: Proceedings of the 10th International Conference on World Wide Web, Hong Kong,China.2001: 285-295.
[5] Resnick P,Iacovou N,Suchak M,et al.GroupLens:An Open Architecture for Collaborative Filtering of Netnews[C]. In: Proceedings of ACM Conference on Computer Supported Cooperative Work. New York: ACM Press,1994: 175-186.
[6] Adomavicius G,Tuzhilin A.Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[J].IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[7] Kim K, Ahn H. A Recommender System Using GA K-means Clustering in an Online Shopping Market[J]. Expert Systems with Applications,2008, 34 (2): 1200-1209.
[8] 张玲,王磊,王姝媛.基于聚类免疫网络的协同过滤推荐算法[J]. 计算机工程与应用,2008, 44(27): 141-144.(Zhang Ling,Wang Lei,Wang Shuyuan.Clustering and Immune Mechanisms Based Collaborative Filtering Recommendation Algorithm[J].Computer Engineering and Applications,2008,44(27):141-144.)
[9] 吴月萍,王娜,马良.基于蚁群算法的协同过滤推荐系统的研究[J]. 计算机技术与发展, 2011, 21(10): 73-76.(Wu Yueping,Wang Na,Ma Liang. Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J]. Computer Technology and Development, 2011, 21(10): 73-76.)
[10] 高立群,葛延峰,孔芝,等.自适应和声粒子群搜索算法[J]. 控制与决策, 2010, 25(7): 1101-1104.(Gao Liqun, Ge Yanfeng, Kong Zhi, et al. Adaptive Harmony PSO Search Algorithm[J]. Control and Decision, 2010, 25(7): 1101-1104.)
[11] Yadav P, Kumar R, Panda S K, et al. An Improved Harmony Search Algorithm for Optimal Scheduling of the Diesel Generators in Oil Rig Platforms[J]. Energy Conversion and Management, 2011, 52(2): 893-902.
[12] Askarzadeh A, Rezazadeh A.An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model[J]. IEEE Transactions on Industrial Electronics,2012, 59(9): 3473-3480.
[13] Geem Z W, Kim J H, Loganathan G V. A New Heuristic Optimization Algorithm: Harmony Search[J]. Simulation, 2001, 76(2):60-68.
[14] Breese J, Hecherman D, Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:43-52.
[1] Jie Li,Fang Yang,Chenxi Xu. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[2] Daoping Wang,Zhongyang Jiang,Boqing Zhang. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[3] Yong Wang,Yongdong Wang,Huifang Guo,Yumin Zhou. Measuring Item Similarity Based on Increment of Diversity[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[4] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[5] Fuliang Xue,Junling Liu. Improving Collaborative Filtering Recommendation Based on Trust Relationship Among Users[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[6] Xingxin Qin,Rongbo Wang,Xiaoxi Huang,Zhiqun Chen. Slope One Collaborative Filtering Algorithm Based on Multi-Weights[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[7] Li Daoguo,Li Lianjie,Shen Enping. New Collaborative Filtering Recommendation Algorithm Based on User Rating Time[J]. 现代图书情报技术, 2016, 32(9): 65-69.
[8] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[9] Wang Yong,Deng Jiangzhou,Deng Yongheng,Zhang Pu. A Collaborative Filtering Recommendation Algorithm Based on Item Probability Distribution[J]. 现代图书情报技术, 2016, 32(6): 73-79.
[10] Ma Li. Collaborative Filtering Recommendation Method Based on User Learning Tree[J]. 现代图书情报技术, 2016, 32(4): 72-80.
[11] Shuhao Jiang, Liyi Zhang, Zhixin Zhang. New Collaborative Filtering Algorithm Based on Relative Similarity[J]. 数据分析与知识发现, 2016, 32(12): 44-49.
[12] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[13] Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[14] Gao Huming, Zhao Fengyue. A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[15] Ying Yan, Cao Yan, Mu Xiangwei. A Hybrid Collaborative Filtering Recommender Based on Item Rating Prediction[J]. 现代图书情报技术, 2015, 31(6): 27-32.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938