Please wait a minute...
New Technology of Library and Information Service  2013, Vol. Issue (6): 63-67    DOI: 10.11925/infotech.1003-3513.2013.06.10
Current Issue | Archive | Adv Search |
Object Recognition of Network Comments Based on Conditional Random Fields
Lin Chen1,2, Wang Lancheng1
1. Department of Military Information Management, Shanghai Branch of Nanjing Institute of Politics, Shanghai 200433, China;
2. Post-doctoral Mobile Stations, Shanghai Branch of Nanjing Institute of Politics, Shanghai 200433, China
Download: PDF(451 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  Combined with the characteristic of comment object, this paper gives an identification method based on conditional random fields. Without domain knowledge, the new method introduces characteristics word and clues word, then transforms comment object recognition problem into solving maximum probability sequence. The experimental results show that this method can completely, effectively extract comment objects from network comments.
Key wordsComment      Comment object      Public opinion      Conditional random fields     
Received: 13 April 2013      Published: 24 July 2013
:  TP391  

Cite this article:

Lin Chen, Wang Lancheng. Object Recognition of Network Comments Based on Conditional Random Fields. New Technology of Library and Information Service, 2013, (6): 63-67.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2013.06.10     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2013/V/I6/63

[1] Hu M, Liu B. Mining Opinion Features in Customer Reviews [C]. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI’04), San Jose, California. AAAI Press, 2004: 755-760.
[2] Popescu A, Etzioni O. Extracting Product Features and Opinions from Reviews [C]. In: Proceedings of the Joint Conference of Human Language Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP-05), Vancouver,Canada. Stroudsburg: Association for Computational Linguistics, 2005: 339-346.
[3] 刘鸿宇, 赵妍妍, 秦兵, 等. 评价对象抽取及其倾向性分析[J]. 中文信息学报, 2010, 24(1): 84-88.(Liu Hongyu, Zhao Yanyan, Qin Bing, et al. Comment Target Extraction and Sentiment Classification[J]. Journal of Chinese Information Processing, 2010, 24(1): 84-88.)
[4] 徐叶强,朱艳辉,王文华, 等. 中文产品评论中评价对象的识别研究[J]. 计算机工程, 2012, 38(20):140-143. (Xu Yeqiang, Zhu Yanhui, Wang Wenhua, et al. Research on Recognition of Evaluation Object in Chinese Product Review[J]. Computer Engineering, 2012, 38(20):140-143.)
[5] Yi J, Nasukawa T, Bunescu R, et al. Sentiment Analyzer: Extracting Sentiments about a Given Topic Using Natural Languages Processing Techniques [C]. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM’03), Melbourne, USA. Washington, D C: IEEE Computer Society, 2003:427-434.
[6] 刘非凡, 赵军, 吕碧波, 等. 面向商务信息抽取的产品命名实体识别研究[J]. 中文信息学报, 2006, 20(1): 7-13.(Liu Feifan, Zhao Jun, Lv Bibo, et al. Study on Product Named Entity Recognition for Business Information Extraction[J]. Journal of Chinese Information Processing, 2006, 20(1): 7-13.)
[7] Zhang S, Jia W J, Xia Y J, et al. Opinion Analysis of Product Reviews[C]. In: Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD’09), Tianjin, China. Washington, D C: IEEE Computer Society, 2009:591-595.
[8] 徐冰, 赵铁军, 王山雨, 等. 基于浅层句法特征的评价对象抽取研究[J]. 自动化学报, 2011, 37(10):1241-1247.(Xu Bing, Zhao Tiejun, Wang Shanyu, et al. Extraction of Opinion Targets Based on Shallow Parsing Features[J]. Aata Automatica Sinica, 2011, 37(10):1241-1247.)
[9] Lafferty J D, McCallum A, Pereira F C N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]. In: Proceedings of the 18th International Conference on Machine Learning (ICML’01), Williamstown, Australia. San Francisco: Morgan Kaufmann Publishers Inc., 2001: 282-289.
[10] 周俊生, 戴新宇, 尹存燕, 等. 基于层叠条件随机场模型的中文机构名自动识别[J]. 电子学报, 2006, 34(5):804-809.(Zhou Junsheng, Dai Xinyu, Yin Cunyan, et al. Automatic Recognition of Chinese Organization Name Based on Cascaded Conditional Random Fields[J]. Aata Electronica Sinica, 2006, 34(5):804-809.)
[11] NLPIR汉语分词系统. NLPIR下载 [EB/OL].[2013-04-16]. http://ictclas.nlpir.org/downloads. (ICTCLAS 2013 Edition. NLPIR Download[EB/OL]. [2013-04-16]. http://ictclas.nlpir.org/downloads.)
[1] Xiuxian Wen,Jian Xu. Research on Product Characteristics Extraction and Hedonic Price Based on User Comments[J]. 数据分析与知识发现, 2019, 3(7): 42-51.
[2] Lin Wang,Ke Wang,Jiang Wu. Public Opinion Propagation and Evolution of Public Health Emergencies in Social Media Era: A Case Study of 2018 Vaccine Event[J]. 数据分析与知识发现, 2019, 3(4): 42-52.
[3] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[4] Zhen Zhang,Jin Zeng. Extracting Keywords from User Comments: Case Study of Meituan[J]. 数据分析与知识发现, 2019, 3(3): 36-44.
[5] Yanshuang Mei,Hengmin Zhu,Jing Wei. A Study on the Mechanism of Media Collaboration on the Spread of Internet Public Opinion[J]. 数据分析与知识发现, 2019, 3(2): 65-71.
[6] Hong Zong,Chunxiang Xue,Fen Chen. Growth Pattern of Online News Comments[J]. 数据分析与知识发现, 2018, 2(9): 50-58.
[7] Longjia Jia,Bangzuo Zhang. Classifying Topics of Internet Public Opinion from College Students: Case Study of Sina Weibo[J]. 数据分析与知识发现, 2018, 2(7): 55-62.
[8] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[9] Ning Zhang,Lemin Yin,Lifeng He. Impacts of “Poster-Follower” Sentiment on Stock Market Performance[J]. 数据分析与知识发现, 2018, 2(6): 1-12.
[10] Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[11] Jingqi Wang,Rui Li,Huayi Wu. The Evolution of Online Public Opinion Based on Spatial Autocorrelation[J]. 数据分析与知识发现, 2018, 2(2): 64-73.
[12] Zhen Li,Shengchun Ding,Nan Wang. Identifying Topics of Online Public Opinion[J]. 数据分析与知识发现, 2017, 1(8): 18-30.
[13] Yu Wang,Xiuxiu Li. Evaluating Business Reputation with E-Commerce Comments[J]. 数据分析与知识发现, 2017, 1(8): 59-67.
[14] Ge Gao,Junmei Luo,Yu Wang. Analyzing Textual Sentiment Based on HNC Theory[J]. 数据分析与知识发现, 2017, 1(8): 85-91.
[15] Xiwei Wang,Liu Zhang,Shimeng Li,Nan’axue Wang. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn