Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (4): 14-19    DOI: 10.11925/infotech.1003-3513.2014.04.03
Current Issue | Archive | Adv Search |
Book Recommendation System Based on Folksonomy in Library
Luo Lin, Liang Guisheng, Cai Jun
Center for the Studies of Information Resources, Wuhan University, Wuhan 430072, China
Download: PDF(1073 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to build a book recommender system based on folksonomy, which forms the triple relations among the users, resources and tags. [Methods] This papercalculates the cosine similarity and weights of books and tags, use sparse vector representation to represent the input matrix for each resource to compress sparse matrix. [Results] Experimental results show that the book weights varied from 0 to 200 and the tag weights followed a power law distribution. In the end, the relevant assessments are performed with the AP and MAP indicators. [Limitations] It fails to get enough data in the library catalogs, hence collects the additional data in book.douban.com. [Conclusions] The recommendation system can help the OPACs to improve its function and personalized services.

Key wordsFolksonomy      Book recommendation      Recommendation system     
Received: 30 December 2013      Published: 19 May 2014
:  G250  

Cite this article:

Luo Lin, Liang Guisheng, Cai Jun. Book Recommendation System Based on Folksonomy in Library. New Technology of Library and Information Service, 2014, 30(4): 14-19.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2014.04.03     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2014/V30/I4/14

[1] Mathes A.Folksonomies-Cooperative Classification and Communication Through Shared Metadata[J].Computer Mediated Communication,2004,47(10):1-13.
[2] Gao K,Wang Y C,Wang Z Q.Similar Interest Clustering and Partial Back-propagation-based Recommendation in Digital Library[J].Library Hi Tech,2005,23(4):587-597.
[3] Avancini H,Candela L,Straccia U.Recommenders in a Personalized,Collaborative Digital Library Environment[J].Journal of Intelligent Information Systems,2007,28(3):253-283.
[4] 王新筠.基于数据挖掘的图书馆用户借阅行为分析及书目推荐服务[D].天津:南开大学,2008.(Wang Xinjun.User's Borrowing Behavior Analysis and Book Recommendation Service in Library Based on Data Mining[D].Tianjin:Nankai University,2008.)
[5] 蒋若珊.基于SOM聚类的个性化图书推荐研究[J].现代情报,2011,31(5):146-148.(Jiang Ruoshan.Research on Personalized Books Recommendation Based on SOM Clustering[J].Modern Information,2011,31(5):146-148.)
[6] 雷蕾.基于关联规则的个性化图书推荐研究[J].情报探索,2011(1):50-51.(Lei Lei.Study on Personalized Information Recommendation Service Basing on Association Rules[J].Information Research,2011(1):50-51.)
[7] 王艳翠.Melvyl推荐项目——发展中的图书馆推荐服务[J].图书馆杂志,2007,26(10):55-57.(Wang Cuiyan.The Melvyl Recommender Project——Developing Library Recommen­dation Services[J].Library Journal,2007,26(10):55-57.)
[8] Milicevic A K,Nanopoulos A,Ivanovic M.Social Tagging in Recommender Systems:A Survey of the State-of-the-art and Possible Extensions[J].Artificial Intelligence Review,2010,33(3):187-209.
[9] Hotho A,Jäschke R,Schmitz C,et al.Information Retrieval in Folksonomies:Search and Ranking[C].In:Proceedings of the 3rd European Semantic Web Conference.2006:411-426.
[10] Zheng N,Li Q.A Recommender System Based on Tag and Time Information for Social Tagging Systems[J].Expert Systems with Applications,2011,38(4):4575-4587.
[11] Zhang Y,Zhang B,Gao K,et al.Combining Content and Relation Analysis for Recommendation in Social Tagging Systems[J].Physica A:Statistical Mechanics and Its Applications,2012,391(22):5759-5768.
[12] Wakeling S,Clough P,Sen B,et al."Readers Who Borrowed This Also Borrowed ?":Recommender Systems in UK Libraries[J].Library Hi Tech,2012,30(1):134-150.
[13] Cattuto C,Benz D,Hotho A,et al.Semantic Analysis of Tag Similarity Measures in Collaborative Tagging Systems[EB/OL].[2013-02-14].http://arxiv.org/pdf/0805.2045.pdf.
[14] Markines B,Cattuto C,Menczer F,et al.Evaluating Similarity Measures for Emergent Semantics of Social Tagging[C].In:Proceedings of the 18th International Conference on World Wide Web.ACM,2009:641-650.
[15] 黄言之.信息检索IR的评价指标综述[EB/OL].[2012-05-08].http://blog.sina.com.cn/s/blog_72995dcc01013oo9.html.(Huang Yanzhi.Review of the Evaluation Indicators of Information Retrieval(IR)[EB/OL].[2012-05-08].http://blog.sina.com.cn/s/blog_72995dcc01013oo9.html.)

[1] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[2] Dongsu Liu,Chenhui Huo. Recommending Image Based on Feature Matching[J]. 数据分析与知识发现, 2018, 2(3): 49-59.
[3] Yinxiu Hou,Weiqing Li,Weijun Wang,Tingting Zhang. Personalized Book Recommendation Based on User Preferences and Commodity Features[J]. 数据分析与知识发现, 2017, 1(8): 9-17.
[4] Li Sheng, Wang Yemao. An Ontology-based and Location-aware Book Recommendation Model in Library[J]. 现代图书情报技术, 2015, 31(3): 58-66.
[5] Liu Dan. Personalized Book Recommender Service Deployment Using Apache Mahout[J]. 现代图书情报技术, 2015, 31(10): 102-108.
[6] Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 64-70.
[7] Yang Ruyi, Liu Dongsu. A Research on Visualization Algorithm of Hierarchy Information Based on Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 71-76.
[8] Bi Qiang, Zhou Shanshan, Ma Zhiqiang, Teng Guangqing. Study on Optimization Mechanism of Tag Cloud for Knowledge Relation[J]. 现代图书情报技术, 2014, 30(5): 33-40.
[9] Yu Bengong, Gu Jiawei. Information Organization and Representation Based on Folksonomy and RDF[J]. 现代图书情报技术, 2014, 30(11): 24-30.
[10] Bi Qiang, Wang Yu. Fronts and Hotspots of the Application Research on Folksonomy Abroad[J]. 现代图书情报技术, 2013, 29(7/8): 36-42.
[11] Li Shuqing, Wang Jianqiang. A Visualization and Recognition Method of Readers’ Interests with the Analysis of the Characteristics of Borrowing Time[J]. 现代图书情报技术, 2013, (5): 46-53.
[12] Teng Guangqing, Bi Datian, Ren Jing, Chen Xiaomei. Study on Semantic Closeness of User Tags in Folksonomy[J]. 现代图书情报技术, 2013, (12): 48-54.
[13] Tian Ye, Zhu Zhongming, Liu Shudong. Review of Recommendation System Based on Linked Data[J]. 现代图书情报技术, 2013, 29(10): 1-7.
[14] Zhang Yunzhong. Using Formal Concept Analysis to Construct the Model of User Behavior Knowledge Discovery in Folksonomy[J]. 现代图书情报技术, 2012, 28(7): 66-75.
[15] Teng Guangqing, Bi Qiang, Gao Ya. A Study on Knowledge Organization of Folksonomy Based on Concept Lattice: Analysis on Structural Characteristics of Related Tags[J]. 现代图书情报技术, 2012, 28(6): 22-28.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn