Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (9): 84-87    DOI: 10.11925/infotech.1003-3513.2007.09.18
Current Issue | Archive | Adv Search |
Query Expansion of Local Feedback Based on Improved Apriori Algorithm
Chen Yanhong Huang Mingxuan2
1(College of Physical Science, Guangxi University, Nanning 530004, China)
2(Department of Mathematics and Computer Science,Guangxi College of Education,Nanning 530023, China )  
Download: PDF (589 KB)  
Export: BibTeX | EndNote (RIS)      

An improved Apriori algorithm for query expansion is presented based on the thrice pruning strategy. This method can tremendously enhance the mining efficiency. After studying the limitations of existing query expansion,a novel query expansion algorithm of local feedback is proposed based on the improved Apriori algorithm.This algorithm can automatically mine those association rules related to original query in the top-rank retrieved documents using the improved Apriori algorithm, to construct an association rules-based database, and extract expansion terms related to original query from the database for query expansion. Experimental results show that our method is better than traditional ones in average precision.

Key wordsQuery expansion      Apriori algorithm      Local feedback      Information retrieval     
Received: 01 August 2007      Published: 25 September 2007


Corresponding Authors: Chen Yanhong     E-mail:
About author:: Chen Yanhong,Huang Mingxuan

Cite this article:

Chen Yanhong,Huang Mingxuan. Query Expansion of Local Feedback Based on Improved Apriori Algorithm. New Technology of Library and Information Service, 2007, 2(9): 84-87.

URL:     OR

[1] Fonseca B M, Golgher P B, de Moura E S, et al. Ziviani. Discovering search engine related query using association rules[J]. Journal of Web Engineering, 2004,2(4): 215-227.
[2] Chengqi Zhang, Zhenxing Qin, Xiaowei Yan. Association-Based Segmentation for Chinese-Crossed Query Expansion[J]. IEEE Intelligent Informatics Bulletin, 2005,5(1):18-25.
[3] Géry M, Haddad M H. Knowledge discovery for automatic query expansion on the World-Wide Web[C]. In: Proceedings of Advances in Conceptual Modeling: ER '99 Workshops, Lecture Notes in Computer Science 1727, Springer, Paris, France, November 15-18,1999: 34-347.
[4] Wei J, Qin Z X, Bressan S, et al. Mining Term Association Rules for Automatic Global Query Expansion: A Case Study with Topic 202 from TREC4[C]. In Proceedings of Americas Conference on Information Systems , 2000.
[5] Wei J, Bressan S, Beng Chin Ooi. Mining Term Association Rules for Automatic Global Query Expansion: Methodology and Preliminary Results[C]. Proceedings of First International Conference on Web Information Systems Engineering, Hong Kong, China, 2000:366-373.
[6] Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database[C].  In  Proceeding  of  1993  ACM  SIGMOD  International Conference on Management of Data, Washington D.C.,1993:207-216.
[7] Xu J X, Croft W B. Query expansion using local and global document analysis[C]. In Proc. CAN-SIGIR Conference Retrieval, Zurich, Switzerland, 1996: 4-11.

[1] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[2] Sun Haixia,Wang Lei,Wu Yingjie,Hua Weina,Li Junlian. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[3] Li Changbing,Pang Chongpeng,Li Meiping. Extracting Product Features with Weight-based Apriori Algorithm[J]. 数据分析与知识发现, 2017, 1(9): 83-89.
[4] Yang Chaofan,Deng Zhonghua,Peng Xin,Liu Bin. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[5] Zhang Xiaojuan,Han Yi. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[6] Huang Mingxuan. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[7] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[8] Heng Ding, Wei Lu. A Study on Correlation-based Cross-Modal Information Retrieval[J]. 现代图书情报技术, 2016, 32(1): 17-23.
[9] Liu Feng, Li Yu, Lv Xueqiang, Li Zhuo. Research on Query Topic Classification Method[J]. 现代图书情报技术, 2015, 31(4): 10-17.
[10] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
[11] Qiu Junping, Fang Guoping. The Comparative Analysis of Natural Language Processing Research at Home and Abroad Based on Knowledge Mapping[J]. 现代图书情报技术, 2014, 30(12): 51-61.
[12] Tang Jingxiao,Lv Xueqiang,Liu Chengyang,Li Han. A Hierarchical Framework for User Intention Recognition[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[13] Zhang Mei, Duan Jianyong, Xu Jichao. Person Name Attribute Knowledge Mining and Its Application for Query Classification[J]. 现代图书情报技术, 2013, 29(9): 82-87.
[14] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
[15] Ma Junhong. A Staged and Integrated Semantic Similarity Algorithm of Text[J]. 现代图书情报技术, 2013, 29(10): 20-26.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938