Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (9): 72-75    DOI: 10.11925/infotech.1003-3513.2007.09.15
Current Issue | Archive | Adv Search |
Design and Implementation of Mining Indirect Connections Between Medical Complementary Literatures Based on UMLS
Zhang Han1   Ren Zhiguo  Yu Qian3   Cui Lei1
1(Faculty of Information Management and Information System (Medicine),
China Medical University, Shenyang 110001,China)
2(Network Center, China Medical University,Shenyang 110001,China)
3(Journal of Spine Surgery,Shanghai Changzheng Hospital, Shanghai 200003,China)
Download: PDF (527 KB)  
Export: BibTeX | EndNote (RIS)      
Abstract  

Following Swanson’s knowledge discovery method from non- interactive literatures, the authors propose a literature-based discovery method by applying NLP techniques to finding biomedical Unified Medical Language System(UMLS) concepts. And then the authors introduce semantic filter system and develop a non- interactive medicial literature-based mining tool,using Swanson’s discovery of connecting migraine with a magnesium deficiency to validate. Experiments show that this method can recur Swanson’s research results very well and find more worthful medi-words.

Key wordsKnowledge discovery      Unified Medical Language System(UMLS)      Ontology     
Received: 31 July 2007      Published: 25 September 2007
ZTFLH: 

G254

 
Corresponding Authors: Zhang Han     E-mail: zhanghan@mail.cmu.edu.cn
About author:: Zhang Han,Ren Zhiguo,Yu Qian,Cui Lei

Cite this article:

Zhang Han,Ren Zhiguo,Yu Qian,Cui Lei. Design and Implementation of Mining Indirect Connections Between Medical Complementary Literatures Based on UMLS. New Technology of Library and Information Service, 2007, 2(9): 72-75.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2007.09.15     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2007/V2/I9/72

[1] Swanson D R. Medical Literature as a Potential Source of New Knowledge[J]. Bull Med Libr Assoc, 1990,78(1):29-37.
[2] Smalheiser N R, Swanson D R. Assessing a Gap in the Biomedical Literature: Magnesium Deficiency and Neurologic Disease[J]. Neurosci Res Commun, 1994,15(1):1-9.
[3] Smalheiser N R, Swanson D R. Indomethacin and Alzheimer’s Disease[J]. Neurology, 1996,46(22):583.
[4] Smalheiser N R, Swanson D R. Linking Estrogen to Alzheimer’s Disease: An Informatics Approach[J]. Neurology, 1996,47(3):809-810.
[5] Smalheiser N R, Swanson D R. Calcium-independent Phospholipase A2 and Schizophrenia[J]. Arch Gen Psychiat, 1998,55(8):752-753.
[6] Swanson D R, Smalheiser N R, Bookstein A. Information Discovery from Complementary Literatures: Categorizing Viruses as Potential Weapons[J]. JASIST, 2001,52(10):797-812.
[7] Arrowsmith[CP/OL].(2007-04-20) .[2007-07-24].  http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html
[8] Unified Medical Language System[EB/OL]. (2006-05-19) .[2007-07-24]. http://www.nlm.nih.gov/research/umls/about_umls.html.
[9] Swanson D R. Migraine and Magnesium: Eleven Neglected Connections[J]. Perspect Biol  Med, 1988, 31(4): 526-557.

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[3] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[4] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[5] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[6] Juhua Wu,Yu Wang,Ming Li,Shaoyun Cai. Knowledge Discovery of Online Health Communities with Weighted Knowledge Network[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[7] Lei Yang,Zirun Wang,Guisheng Hou. Discovering Topics of Online Health Community with Q-LDA Model[J]. 数据分析与知识发现, 2019, 3(11): 52-59.
[8] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[9] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[10] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[11] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[12] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[13] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[14] Wang Xin,Feng Wen’gang. Review of Techniques Detecting Online Extremism and Radicalization[J]. 数据分析与知识发现, 2018, 2(10): 2-8.
[15] Zhang Zhiqiang,Fan Shaoping,Chen Xiujuan. Biomedical Informatics Studies for Knowledge Discovery in Precision Medicine[J]. 数据分析与知识发现, 2018, 2(1): 1-8.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn