Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (3): 1-7    DOI: 10.11925/infotech.1003-3513.2016.03.01
Orginal Article Current Issue | Archive | Adv Search |
Multi-task Session Identification and Analysis in Product Search
Zhang Pengyi,Zhou Xiang(),Wang Jun
Department of Information Management, Peking University, Beijing 100871, China
Download: PDF(594 KB)   HTML ( 87
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This research aims to identify shopping tasks from product search, and then analyze the characteristic of multi-task sessions. [Methods] Using the product classification of Taobao, and a list of manually selected product terms, we identified online shopping tasks based on query terms from 19 704 search sessions by 2 754 users. [Results] First, factors influence the number of queries per shopping task: product characteristics, the amount of available products, and the difficulty in describing product category with query terms. Second, we found that in sessions with a major task, the relationship among the shopping tasks is closer. [Limitations] The task identification method based on query terms cannot completely describe the complex consumer shopping behaviors. [Conclusions] This study provides an exploratory understanding of the relationships among various shopping tasks, and may be used to improve product recommendation algorithm, as well as predict shopping behaviors.

Key wordsProduct search      Shopping task identification      Shopping task analysis      Multi-task session     
Received: 19 October 2015      Published: 12 April 2016

Cite this article:

Zhang Pengyi,Zhou Xiang,Wang Jun. Multi-task Session Identification and Analysis in Product Search. New Technology of Library and Information Service, 2016, 32(3): 1-7.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2016.03.01     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2016/V32/I3/1

[1] 冯炜. 消费者网络购物信任影响因素的实证研究[D]. 杭州: 浙江大学, 2010.
[1] (Feng Wei.Empirical Study on Factors Influencing Trust of Consumers in Online Shopping [D]. Hangzhou: Zhejiang University, 2010.)
[2] 中国互联网络信息中心. 2014年中国网络购物市场研究报告[EB/OL]. [2015-06-30]. .
[2] (CNNIC. The Research Report of Online Shopping Market in China, 2014 [EB/OL]. [2015-06-30].
[3] Spink A, Ozmutlu H C, Ozmutlu S.Multitasking Information Seeking and Searching Processes[J]. Journal of the American Society for Information Science and Technology, 2002, 53(8): 639-652.
[4] Spink A, Park M, Jansen B J.Information Task Switching and Multitasking Web Search[J]. Proceedings of the American Society for Information Science and Technology, 2004, 41(1): 213-217.
[5] 张文君, 王军, 徐山川. 电商用户需求状态的聚类分析——以淘宝网女装为例[J].现代图书情报技术, 2015(3): 67-74.
[5] (Zhang Wenjun, Wang Jun, Xu Shanchuan.The Probing of E-commerce User Need States by Page Cluster Analysis—— An Empirical Study on Women’s Clothes from Taobao.com[J]. New Technology of Library and Information Service, 2015(3):67-74.)
[6] 袁兴福, 张鹏翼, 刘洪莲,等. 基于点击流的电商用户会话建模[J]. 图书情报工作, 2015, 59(1): 119-126.
[6] (Yuan Xingfu, Zhang Pengyi, Liu Honglian, et al.Modeling E-commerce User Session Behaviors Based on Click-through Sequences[J]. Library and Information Service, 2015, 59(1): 119-126.)
[7] Glance N S.Community Search Assistant [C]. In: Proceedings of the 6th International Conference on Intelligent User Interfaces. New York: ACM, 2001: 91-96.
[8] Raghavan V V, Sever H.On the Reuse of Past Optimal Queries[C]. In: Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1995:344-350.
[9] J?rvelin A, J?rvelin A, J?rvelin K.S-grams: Defining Generalized N-grams for Information Retrieval[J]. Information Processing & Management, 2007, 43(4): 1005-1019.
[10] Jones R, Klinkner K L.Beyond the Session Timeout: Automatic Hierarchical Segmentation of Search Topics in Query Logs [C]. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM, 2008: 699-708.
[11] Salton G, McGill M J. Introduction to Modern Information Retrieval[M]. McGraw-Hill Book Company, 1983.
[12] Lucchese C, Orlando S, Perego R, et al.Identifying Task-based Sessions in Search Engine Query Logs[C]. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 277-286.
[13] Spink A, Park M, Jansen B J, et al.Multitasking During Web Search Sessions[J]. Information Processing & Management, 2006, 42(1): 264-275.
[14] Ozmutlu S, Ozmutlu H C, Spink A.Multitasking Web Searching and Implications for Design[J]. Proceedings of the American Society for Information Science and Technology, 2003, 40(1): 416-421.
[15] Ozmutlu S, Ozmutlu H C, Spink A.A Study of Multitasking Web Search [C]. In: Proceedings of International Conference on Information Technology: Coding and Computing (ITCC 2003). Washington DC: IEEE, 2003: 145-148.
[16] Lin S, Belkin N.Validation of a Model of Information Seeking over Multiple Search Sessions[J]. Journal of the American Society for Information Science and Technology, 2005, 56(4): 393-415.
[17] Wang H, Song Y, Chang M W, et al.Learning to Extract Cross-session Search Tasks [C]. In: Proceedings of the 22nd International Conference on World Wide Web. Geneva: International World Wide Web Conferences Steering Committee, 2013: 1353-1364.
No related articles found!
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn