Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (10): 47-51    DOI: 10.11925/infotech.1003-3513.2007.10.11
Current Issue | Archive | Adv Search |
Study on Query Expansion Model Based on Association Rules Mining
Huang Mingxuan  Chen Yanhong2   Zhang Shichao3,4
1(Department of Math and Computer Science, Guangxi College of Education, Nanning 530023, China)
2(College of Physical Science, Guangxi University, Nanning 530004 , China)
3(College of Computer Science, Guangxi Normal University, Guilin 541004, China)
4(Faculty of Information Technology, University of Technology, Sydney, Australia)
Download: PDF(412 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

In order to better apply association rule mining technique to query expansion and find out some better query expansion models, 4 categories of query expansion models with 13 varieties are given based on item-all-weighted association rule mining. Comparison of retrieval performances are made through experiments. Some better query expansion models are discovered.

Key wordsQuery expansion      Association rules      Expansion model      Information retrieval     
Received: 13 August 2007      Published: 25 October 2007


Corresponding Authors: Huang Mingxuan     E-mail:
About author:: Huang Mingxuan,Chen Yanhong,Zhang Shichao

Cite this article:

Huang Mingxuan,Chen Yanhong,Zhang Shichao. Study on Query Expansion Model Based on Association Rules Mining. New Technology of Library and Information Service, 2007, 2(10): 47-51.

URL:     OR

[1] Yufeng Jing and W. Bruce Croft. An Association Thesaurus for Information Retrieval[C]. In Proceedings of RIAO 94, 1994:146-160.
[2] Jinxi Xu and W. Bruce Croft. Query Expansion Using Local and Global Document Analysis[C]. In proc. CAN-SIGIR Conference Retrieval, Zurich,Witzerland, 1996: 4-11.
[3] Hang Cui, Ji-Rong Wen,  Jian-Yun Nie,et alQuery Expansion by Mining User Logs[J]. IEEE  Transactions on Knowledge and Data Engineering (TKDE), Vol. 15, No. 4, July/August 2003:  829-839.
[4] B.M. Fonseca, P.B. Golgher, E.S. de Moura,et al.Discovering Search Engine Related Query Using Association Rules[J]. Journal of Web Engineering 2004,2(4): 215-227.
[5] Chengqi Zhang, Zhenxing Qin, Xiaowei Yan. Association-Based Segmentation for Chinese-Crossed Query Expansion[J]. IEEE Intelligent Informatics Bulletin, June 2005 Vol.5 No.1: 18-25.
[6] Zhenxing Qin, Li Liu ,Shichao Zhang. Mining Term Association Rules for Heuristic Query Construction[C].  Proceedings of 8th Pacific-Asia Conference, PAKDD 2004, Sydney, Australia, May 26-28, 2004: 145-154.
[7] Mathias Géry and M. Hatem Haddad. Knowledge Discovery for Automatic Query Expansion on the World-Wide Web[C]. In: Proceedings of Advances in Conceptual Modeling: ER '99 Workshops, Lecture Notes in Computer Science 1727, Springer, Paris, France, November 15-18,1999: 34-347.
[8] Min Song, Il-Yeol Song , Xiaohua Hu,et al.Semantic Query Expansion Combining Association Rules with Ontologies and Information Retrieval Techniques[C]. DaWaK 2005: 326-335
[9] Jie Wei, Zhenxing Qin, Stéphane Bressan,et al.Mining Term Association Rules for Automatic Global Query Expansion: A Case Study with Topic 202 from TREC4[C]. In Proceedings of Americas Conference on Information Systems , 2000.
[10] 黄名选,严小卫,张师超. 基于文本库的完全加权词间关联规则挖掘算法[J]. 第24届全国数据库学术会议(NDBC2007)录用,广西师范大学学报:自然科学版,2007(4).

[1] Haixia Sun,Lei Wang,Yingjie Wu,Weina Hua,Junlian Li. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[2] Chaofan Yang,Zhonghua Deng,Xin Peng,Bin Liu. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[3] Xing Wei,Dehua Hu,Minhan Yi,Qizhen Zhu,Wenjie Zhu. Extracting Disease-Gene-Drug Correlations Based on Data Cube[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[4] Xiaojuan Zhang, Yi Han. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[5] Mingxuan Huang. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[6] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[7] Guangce Ruan, Lei Xia. Mining Document Topics Based on Association Rules[J]. 数据分析与知识发现, 2016, 32(12): 50-56.
[8] Heng Ding, Wei Lu. A Study on Correlation-based Cross-Modal Information Retrieval[J]. 现代图书情报技术, 2016, 32(1): 17-23.
[9] Du Siqi, Li Honglian, Lv Xueqiang. Research of Chinese Chunk Parsing in Application of the Product Feature Extraction[J]. 现代图书情报技术, 2015, 31(9): 26-30.
[10] Liu Feng, Li Yu, Lv Xueqiang, Li Zhuo. Research on Query Topic Classification Method[J]. 现代图书情报技术, 2015, 31(4): 10-17.
[11] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
[12] Qiu Junping, Fang Guoping. The Comparative Analysis of Natural Language Processing Research at Home and Abroad Based on Knowledge Mapping[J]. 现代图书情报技术, 2014, 30(12): 51-61.
[13] Tang Jingxiao,Lv Xueqiang,Liu Chengyang,Li Han. A Hierarchical Framework for User Intention Recognition[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[14] Zhang Mei, Duan Jianyong, Xu Jichao. Person Name Attribute Knowledge Mining and Its Application for Query Classification[J]. 现代图书情报技术, 2013, 29(9): 82-87.
[15] Wang Yong, Zhang Qin, Yang Xiaojie. Research on the Method of Extracting Features from Chinese Product Reviews on the Internet[J]. 现代图书情报技术, 2013, (12): 70-73.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938