Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (10): 80-84    DOI: 10.11925/infotech.1003-3513.2007.10.18
Current Issue | Archive | Adv Search |
Research and Implementation of Several Key Problems in Feature Choice and Weight Improvement Based on Latent Semantic Indexing
Li Yuanyuan   Ma Yongqiang
(School of Information Science & Technology,Southwest Jiaotong University ,Chengdu 610031,China)
Download: PDF (403 KB)  
Export: BibTeX | EndNote (RIS)      

The basic theory and its features about Latent Semantic Indexing(LSI) are analyzed.For the three factors of LSI, the word selection,dimension simplification, words weighting have been engaged and improved. Scientific and technical literatures from computing are used as testing documents, also the improved weight algorithm and the retrieval results about two LSI systems are analyzed. The experimental results show that the feature choice and retrieval results are superior improved and hard performance with the new weight algorithm.

Key wordsLatent semantic      Weighting improvement      Data sparse      Feature choice     
Received: 08 August 2007      Published: 25 October 2007


Corresponding Authors: Li Yuanyuan     E-mail:
About author:: Li Yuanyuan,Ma Yongqiang

Cite this article:

Li Yuanyuan,Ma Yongqiang. Research and Implementation of Several Key Problems in Feature Choice and Weight Improvement Based on Latent Semantic Indexing. New Technology of Library and Information Service, 2007, 2(10): 80-84.

URL:     OR

[1] Gao J, Zhang J. Clustered SVD Strategies in Latent Semantic Indexing[J]. Information Processing & Management, 2005, 41(3): 1051-1063.
[2] Zha H Y, Marques O, Simon H. A Subspace - based Model for Information Retrieval with Applications in Latent Semantic Indexing[R]. U. K. :CSE Tech Report CSE - 98 - 002 ,1998.
[3] Papadimitriou C H,  Raghavan P,  Tamaki H, et al. Latent Semantic Indexing :A Probabilistic Analysis[C]. In : Proceedings of PODS'98[C].Washington:Seattle,1998:159-168.
[4] 陈越, 郭力. 隐含语义检索及其应用[J]. 现代图书情报技术.2001 (6) : 27-29.
[5] 盖杰,王怡,武港山. 基于潜在语义分析的信息检索[J]. 计算机工程.2004, 30(6):58-60.
[6] 韩客松,王永成.一种用于主题提取的非线性加权方法[J].情报学报.2000,19(6):650-653.
[7] 郑家恒,卢娇丽.关键词抽取方法的研究[J].计算机工程.2005,31(18):194-196.

[1] Chongwu Bi,Guanghui Ye,Mingqian Li,Jieyan Zeng. Discovering City Profile Based on Tag Semantic Mining[J]. 数据分析与知识发现, 2019, 3(12): 41-51.
[2] Junzhi Jia,Zhuangzhuang Ye. Clustering Wikidata’s Organizational Entities with Latent Semantic Index[J]. 数据分析与知识发现, 2019, 3(10): 56-65.
[3] Tian Shihai,Lyu Deli. An Early Warning Algorithm for Public Opinion of Safety Emergency[J]. 数据分析与知识发现, 2017, 1(2): 11-18.
[4] Zhao Yiping,Bi Qiang. Using Linked Data to Retrieve Similar Documents from the Academic Resource Websites[J]. 现代图书情报技术, 2016, 32(3): 41-49.
[5] Li Guolei, Chen Xianlai, Xia Dong, Yang Rong. Latent Semantic Analysis of Electronic Medical Record Text for Clinical Decision Making[J]. 数据分析与知识发现, 2016, 32(3): 50-57.
[6] Wu Ni, Zhao Pengwei, Qin Chunxiu. Microblog Hotspot Detection Based on Semantic Analysis and Similarity Strength[J]. 现代图书情报技术, 2015, 31(5): 57-64.
[7] Xia Dong, Xiao Xiaodan, Li Guolei, Chen Xianlai. Research on Correspondence Between Keyword and Chinese Library Classification Based on Latent Semantic Analysis[J]. 现代图书情报技术, 2014, 30(12): 92-96.
[8] Liu Sa Zhang Chengzhi. Survey of Multilingual Document Representation[J]. 现代图书情报技术, 2010, 26(6): 33-41.
[9] Wang Song,Dai Yisheng,Li Baozhen. Explore Network Resource Topics from Social Annotations System Based on PLSA[J]. 现代图书情报技术, 2010, 26(3): 47-51.
[10] Sun Haixia,Cheng Ying. Overview of Research on Latent Semantic Indexing[J]. 现代图书情报技术, 2007, 2(9): 49-53.
[11] Qin Chunxiu,Liu Huailiang,Zhao Pengwei . A Text Semantic Information Processing Method Based on Ontology and Latent Semantic Indexing[J]. 现代图书情报技术, 2006, 1(9): 34-37.
[12] Wang Zhijin,Zheng Hongjun. Algebra-Based Retrieval Model and Its Extension[J]. 现代图书情报技术, 2005, 21(7): 30-33.
[13] Tao Yuehua,Sun Maosong. Natural Language Retrieval for Latent Semantic Indexing[J]. 现代图书情报技术, 2001, 17(5): 40-41.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938