Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (3): 10-20    DOI: 10.11925/infotech.2096-3467.2017.03.02
Orginal Article Current Issue | Archive | Adv Search |
Recommending Potential R&D Partners Based on Patents
Zhai Dongsheng, Guo Cheng(), Zhang Jie, Xia Jun
School of Economics and Management, Beijing University of Technology, Beijing 100024, China
Download: PDF (1086 KB)   HTML ( 16
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This study presents a recommendation method based on patents to accurately identify potential R&D partners. [Methods] First, we extracted the functions, scientific impacts and functional effects of the related patents based on the TRIZ theory. Second, we constructed a patent technology tree, which was mapped with key information from the enterprise needs. Finally, we identified and evaluated the potential R&D partners in accordance with the patentee. [Results] We successfully assessed the retrieved R&D partners with the proposed method based on water heater related patents. [Limitations] The accuracy of semantic feature extraction needs to be improved. [Conclusions] The proposed method could find and evaluate the potential R&D partners for enterprises effectively.

Key wordsPatent      Technology Tree      TRIZ      R&D Partners     
Received: 29 August 2016      Published: 20 April 2017
ZTFLH:  G306.0  

Cite this article:

Zhai Dongsheng,Guo Cheng,Zhang Jie,Xia Jun. Recommending Potential R&D Partners Based on Patents. Data Analysis and Knowledge Discovery, 2017, 1(3): 10-20.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.03.02     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I3/10

编号 动词 同义词 后续可能名词
1 吸收 吸附 能量、物质
2 积累 积攒、累积、积聚 能量、物质
3 集中 浓缩 能量、物质
4 检测 检查、测量 能量、参数、物质
5 避免 防止 能量、物质
6 产生 生产 能量、物质
指标 计算方法
技术份额 潜在研发伙伴在某一技术领域的专利申请量/
该技术领域所有企业专利申请量
技术领先度 潜在研发伙伴某一技术领域专利平均被引数/
该领域所有专利平均被引数
技术影响指数 某一技术领域专利被引次数前10%的专利中,
潜在研发伙伴(机构、企业)专利所占的比例
同族专利影响
指数
潜在研发伙伴在某一技术领域内平均专利同族
数/该技术领域内平均专利同族数
组织开放度 某一技术领域潜在研发伙伴具有共享所有权专
利数/该技术领域内潜在研发伙伴的专利总数
联合所有权 某一技术领域需求企业与潜在研发伙伴共享所有权的专利数/该技术领域内需求企业所有具有共享所有权性质的专利数
合作专利
被引指数
某一技术领域潜在研发伙伴共享所有权专利的平均被引数/该技术领域内潜在研发伙伴所有专利的平均被引数
合作专利
同族指数
某一技术领域潜在研发伙伴共享所有权专利的平均同族数/该技术领域内潜在研发伙伴所有专利的平均同族数
专利号 专利功能 专利科学效应 专利功能效果
JP2015021723-A without forming water scales;
heat the water
electromagnetic induction achieving energy-saving effect;
safe manner
CN105402894-A risk of electric shock is avoided;
formation of scale is avoided
electro-thermal conversion electro-thermal conversion efficiency;
extending the use of water heaters life
CN105241095-A eliminates scale deposit spring and needle action
(vibration)
Ensures safety, Saves energy
WO2016006225-A1 anti-scale scale inhibitor extended life, easy, economical
KR2015057208-A generation of the scale is suppressed magnetic force security of the water purifier is improved
JP2014238200-A preventing the adhesion of scale control temperature energy saving is possible
performing highly efficient heat exchange
maintenance operation is performed easily
需求项目名称 需求项目具体内容
需求标题 寻求电热水器不结垢或结垢后可快速清洗的解决方案
需求描述 1. 储水式电热水器使用一段时间后, 内部结水垢、沉积一些污垢; 长时间不用, 担心内胆里的水滋生细菌, 洗澡时不放心。
2. 内胆里面脏了以后, 用户不知道如何清洗, 不会/不能自行清洗。
水垢成因: ……
需求背景 寻找如下两种解决方案:
1. 能够减轻热水器内胆结垢的方案;
2. 结垢后能够方便地进行水垢清理的技术方案。
可能的
技术方向
暂无技术领域限制
领域 个人健康, 净化
标签 电热水器、除垢、防垢、清垢
需求语义特征 需求项目语义特征内容
技术领域 热水器、个人健康、净化
技术问题 减轻热水器内胆结垢、沉积污垢、
水垢不能自行清理、滋生细菌
技术手段 超声波、磁方法
技术效果 方便, 性能, 快速, 成本
编号 指标名称 计算
要素1
计算
要素2
计算
要素3
计算
要素4
结果
1 技术
份额
总专利数 松下
专利数
0.03
612 19
2 技术
领先
总被引数 平均
被引数
松下总被引数 松下平均被引数 1.11
2 987 4.88 103 5.42
3 技术影
响指数
前10%
专利数
松下占
专利数
0.14
61 9
4 同族专
利指数
总同族数 平均
同族数
松下总
同族数
松下平均同族数 1.04
1 774 2.89 60 3.15
5 机构开
放性
松下共享所有权
专利数
松下专利总数 0.52
10 19
6 联合所
有权
共享
专利数
总共享
专利数
0 9 0
7 合作专利
被引指数
共享专利被引总数 共享专
利平均
被引数
松下平均被引数 1.13
61 6.1 5.42
8 合作专利
同族指数
共享专利同族总数 共享专
利平均
同族数
松下平均同族数 1.87
59 5.9 3.15
指标名 大金工业 松下 三菱电机 夏普 飞利浦
技术份额 1 0.9 0.8 0.4 0.2
技术领先度 0.19 0.475 0.584 1 0
技术影响指数 0.25 0.5 1 0.5 0
同族专利影响指数 0.783 0.569 0.738 1 0.719
组织开放性 0.789 0.292 1 0.684 0
联合所有权 0 0 0 0 0
合作专利被引指数 1 0.787 0.322 0.189 0
合作专利同族指数 0.752 0.135 0.519 1 0
公司名 综合评价值
三菱电机 4.963
夏普 4.773
大金工业 4.764
松下 3.658
飞利浦 0.919
[1] 包昌火, 谢新洲. 竞争情报与企业竞争力[M]. 北京: 华夏出版社, 2001: 137-145.
[1] (Bao Changhuo, Xie Xinzhou.Competitive Intelligence and Enterprise Competitive Power [M]. Beijing: Huaxia Publishing House, 2001: 137-145.)
[2] 谢炜. 中国专利产出研究[D]. 成都: 电子科技大学, 2005.
[2] (Xie Wei.Research on China’s Patent Output[D]. Cheng Du: University of Electronic Science and Technology of China, 2005.)
[3] Yoon B, Phaal R, Probert D.Morphology Analysis for Technology Roadmapping: Application of Text Mining[J]. R&d Management, 2008, 38(1): 51-68.
doi: 10.1111/j.1467-9310.2007.00493.x
[4] Lee S, Kang S, Park E, et al.Applying Technology Roadmaps in Project Selection and Planning[J]. International Journal of Quality & Reliability Management, 2008, 25(1): 39-51.
doi: 10.1108/02656710810843568
[5] Cascini G, Zini M.Measuring Patent Similarity by Comparing Inventions Functional Trees [A]//Computer-aided Innovation (CAI)[M]. New York: Springer US, 2008: 31-42.
[6] Fantoni G, Apreda R, Dell’Orletta F, et al. Automatic Extraction of Function-Behaviour-State Information from Patents[J]. Advanced Engineering Informatics, 2013, 27(3): 317-334.
doi: 10.1016/j.aei.2013.04.004
[7] Choi S, Park H, Kang D, et al.An SAO-based Text Mining Approach to Building a Technology Tree for Technology Planning[J]. Expert Systems with Applications An International Journal, 2012, 39(13): 11443-11455.
doi: 10.1016/j.eswa.2012.04.014
[8] Russo D, Montecchi T, Liu Y.Functional-based Search for Patent Technology Transfer[C]//Proceedings of the 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago: American Society of Mechanical Engineers, 2012: 529-539.
[9] 王朝霞, 邱清盈, 冯培恩, 等. 机械产品专利技术方案信息抽取方法[J]. 机械工程学报, 2009, 45(10): 198-206.
doi: 10.3901/JME.2009.10.198
[9] (Wang Zhaoxia, Qiu Qingying, Feng Peien, et al.Information Extraction Method of Technical Solution from Mechanical Product Patent[J]. Journal of Mechanical Engineering, 2009, 45(10): 198-206.)
doi: 10.3901/JME.2009.10.198
[10] Cantner U, Meder A.Technological Proximity and the Choice of Cooperation Partner[J]. Journal of Economic Interaction and Coordination, 2007, 2(1): 45-65.
doi: 10.1007/s11403-007-0018-y
[11] Lhuillery S, Pfister E.R&D Cooperation and Failures in Innovation Projects: Empirical Evidence from French CIS Data[J]. Research Policy, 2009, 38(1): 45-57.
doi: 10.1016/j.respol.2008.09.002
[12] Chun H, Mun S B.Determinants of R&D Cooperation in Small and Medium-sized Enterprises[J]. Small Business Economics, 2012, 39(2): 419-436.
doi: 10.1007/s11187-010-9312-5
[13] 王进富, 魏珍, 刘江南, 等. 以企业为主体的产学研战略联盟研发伙伴选择影响因素研究——基于3C理论视角[J]. 预测, 2013, 32(4): 74-80.
[13] (Wang Jinfu, Wei Zhen, Liu Jiangnan, et al.Research on Influencing Factors of the IUR Strategic Alliance’s R&D Partner Selection—Based on the Perspective of 3C Theory[J]. Forecasting. 2014, 32(4): 74-80.)
[14] 纪慧生, 王红卫, 陆强. 基于知识特征的企业研发伙伴选择[J]. 沈阳工业大学学报: 社会科学版, 2011, 4(2): 137-140.
doi: 10.3969/j.issn.1674-0823.2011.02.011
[14] (Ji Huisheng, Wang Hongwei, Lu Qiang.R&D partner Selection of Enterprise Based on Knowledge Characteristics[J]. Journal of Shenyang University of Technology: Social Science Edition, 2011, 4(2): 137-140.)
doi: 10.3969/j.issn.1674-0823.2011.02.011
[15] 袁晓东, 陈静. 专利信息分析在技术创新合作伙伴选择中的应用[J]. 情报杂志, 2011, 30(8): 22-27.
doi: 10.3969/j.issn.1002-1965.2011.08.005
[15] (Yuan Xiaodong, Chen Jing.The Application of Patent Information Analysis Method in the Choice of Cooperative Technological Innovation Partners[J]. Journal of Intelligence, 2011, 30(8): 22-27.)
doi: 10.3969/j.issn.1002-1965.2011.08.005
[16] 宿慧爽, 兰衍霏, 衣兰文. 企业研发合作伙伴选择研究综述: 基于影响因素的视角[J]. 现代管理科学, 2013 (6): 48-50.
[16] (Su Huishuang, Lan Yanfei, Yi Lanwen.Review on Selecting Enterprises R&D Partners: Based on the Perspective of Influence Factors[J]. Modern Management Science, 2013 (6): 48-50.)
[17] Song B, Seol H, Park Y.A Patent Portfolio-based Approach for Assessing Potential R&D Partners: An Application of the Shapley Value[J]. Technological Forecasting and Social Change, 2016, 103: 156-165.
doi: 10.1016/j.techfore.2015.10.010
[18] Lee K, Yoon B.A Method for Partner Selection in R&D Collaboration Between Large Companies and SMEs Using Patent Information[C]//Proceedings of the 2013 Technology Management in the IT-Driven Services (PICMET). 2013: 1886-1891.
[19] 翟东升, 夏军, 张杰, 等. 基于专利特征抽取的技术树构建方法研究[J]. 情报学报, 2015, 34(7): 717-724.
doi: 10.3772/j.issn.1000-0135.2015.007.006
[19] (Zhai Dongsheng, Xia Jun, Zhang Jie, et al.Research on Construction of Technology Tree Based on Patent Feature Extraction[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(7): 717-724.)
doi: 10.3772/j.issn.1000-0135.2015.007.006
[1] Hu Yongjun,Wei Tingting,Dou Zixin,Huang Yunyin,Liang Ruicheng,Chang Huiyou. Tech-Development Path of Knife-Scissor Industry in Guangdong with TRIZ Analysis of Patents[J]. 数据分析与知识发现, 2020, 4(2/3): 101-109.
[2] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[3] Yan Yu,Lei Chen,Jinde Jiang,Naixuan Zhao. Measuring Patent Similarity with Word Embedding and Statistical Features[J]. 数据分析与知识发现, 2019, 3(9): 53-59.
[4] Jianhua Hou,Pan Liu. Measuring Tech-Entropy of System Evolution: An Empirical Study of Patents[J]. 数据分析与知识发现, 2019, 3(8): 21-29.
[5] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[6] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[7] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[8] Jinzhu Zhang,Yue Wang,Yiming Hu. Analyzing Sci-Tech Topics Based on Semantic Representation of Patent References[J]. 数据分析与知识发现, 2019, 3(12): 52-60.
[9] Xueying Wang,Hao Wang,Zixuan Zhang. Recognizing Semantics of Continuous Strings in Chinese Patent Documents[J]. 数据分析与知识发现, 2018, 2(5): 11-22.
[10] Yan Yu,Naixuan Zhao. Weighted Topic Model for Patent Text Analysis[J]. 数据分析与知识发现, 2018, 2(4): 81-89.
[11] Yan Yu,Naixuan Zhao. Choosing Stopwords for Patent Topic Analysis Based on Auxiliary Set[J]. 数据分析与知识发现, 2018, 2(11): 95-103.
[12] Shanshan Jia,Chang Liu,Lianying Sun,Xiaoan Liu,Tao Peng. Patent Classification Based on Multi-feature and Multi-classifier Integration[J]. 数据分析与知识发现, 2017, 1(8): 76-84.
[13] Shuying Li,Shu Fang. Review of Data Analysis Methods in Measuring Technology Fusion and Trend[J]. 数据分析与知识发现, 2017, 1(7): 2-12.
[14] Zhai Dongsheng,Hu Dengjin,Zhang Jie,He Xijun,Liu He. Hierarchical Classification Model for Invention Patents[J]. 数据分析与知识发现, 2017, 1(12): 63-73.
[15] Hou Jianhua,Guo Shuang. Analyzing Emerging Issues with Technology Entropy Method Based on Patents: Case Study of Carbon Capture[J]. 数据分析与知识发现, 2017, 1(1): 55-63.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn