Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (6): 72-82    DOI: 10.11925/infotech.2096-3467.2017.06.08
Orginal Article Current Issue | Archive | Adv Search |
Studying Users’ Interaction Behaviors of Sharing Economic Platform with 2-Mode Complex Network Analysis
Chen Yuan, Liu Fuzhen, Wu Jiang()
School of Information Management, Wuhan University, Wuhan 430072, China
The Center of E-commerce Research and Development of Wuhan University, Wuhan 430072, China
Download: PDF (1660 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper explores the service optimization methods based on the concept of “shared ownership without possession” of the sharing economy. [Methods] First, we retrieved data from the website of “xiaozhu short-term rentals”. Then, we used the 2-mode network tool “Ucinet” to analyze the changing of users’ locations. Third, we studied the impacts of individual centrality on users’ behaviors through the fixed effect model and the relationship among the one-mode network users. [Results] We found that degree centrality positively influenced users’ behaviors. The betweenness centrality of the host agents was negatively correlated with the consumers’ behaviors, while the betweenness centrality of the key tenant agents positively affected the hosts’ offering behaviors. [Limitations] We focused on active users, and did not investigate the characteristics of the entire network. [Conclusions] Business social network systems like xiaozhu.com should encourage their users to become both consumers and service providers, which will promote the development of Sharing Economy.

Key words2-Mode Network      Sharing Economy      Centrality      User Behavior      Short Rental Platform     
Received: 10 April 2017      Published: 25 August 2017
ZTFLH:  TP393  

Cite this article:

Chen Yuan,Liu Fuzhen,Wu Jiang. Studying Users’ Interaction Behaviors of Sharing Economic Platform with 2-Mode Complex Network Analysis. Data Analysis and Knowledge Discovery, 2017, 1(6): 72-82.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.06.08     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I6/72

时期 节点数 新增
节点数
边数 新增
订单数
关系 新增
关系数
8月 1 958 3 266 2 125
9月 2 204 246 3 722 456 2 400 275
10月 2 367 163 4 018 296 2 579 179
Uname 8月 9月 10月 变化量
Outdegree Degree Outdegree Degree Outdegree Degree Rate1 Rate2
水果女王 1 5 1 5 1 5 0 0
虹狐狸 2 237 2 244 2 245 7 1
星期日 0 202 0 336 0 405 134 69
一人依梦 5 358 5 395 5 443 37 48
NANA_ 2 442 2 486 2 509 44 23
曾国藩 0 470 0 489 0 505 19 16
蒋小姐 0 15 0 16 0 16 1 0
杨洋洋
YAYANGNG
5 55 5 55 5 55 0 0
DP 4 122 4 226 4 279 104 53
柏林 0 313 0 347 0 365 34 18
Uname Degree Closeness Betweenness
8月 9月 10月 8月 9月 10月 8月 9月 10月
玫瑰1992 0.05 0.05 0.05 0.438 0.436 0.436 0 0 0
杨洋洋YAYANGNG 0.2 0.2 0.2 0.573 0.59 0.594 0.043 0.046 0.047
芒果公寓 0.05 0.05 0.05 0.5 0.493 0.491 0 0 0
哆啦之家 0.1 0.1 0.1 0.519 0.518 0.517 0.004 0.003 0.003
虹狐狸 0.1 0.1 0.1 0.534 0.533 0.532 0.006 0.005 0.005
DP 0.1 0.1 0.1 0.54 0.539 0.539 0.006 0.005 0.005
王GARY 0.05 0.05 0.05 0.497 0.515 0.525 0 0 0
一人依梦 0.2 0.2 0.2 0.575 0.582 0.583 0.035 0.031 0.028
NANA_ 0.1 0.1 0.1 0.53 0.519 0.515 0.003 0.002 0.002
用户类型 变量 平均值 标准差 最小值 最大值
房东 Degree 0.0545167 0.0394721 0.002 0.129
Closeness 35.42335 124.5371 0.183 601.25
Betweenness 0.1049167 0.0828587 0 0.258
Order 182.7667 151.7818 4 504
房客 Degree 0.0544869 0.0178262 0.05 0.2
Closeness 2.656368 29.55877 0.307 678.857
Betweenness 0.0005464 0.0032874 0 0.082
Consumption 1.688142 1.738549 1 26
房东 房客
Degree Closeness Betweenness Order Degree Closeness Betweenness Consumption
房东 Degree 1
Closeness -0.3742 1
Betweenness 0.995 -0.363 1
Order 0.9797 -0.3329 0.9683 1
房客 Degree 1
Closeness -0.018 1
Betweenness 0.7875 -0.0118 1
Consumption 0.3602 -0.0275 0.2362 1
Order 组内R2=0.5542, 组间R2=0.9401, 总体R2= 0.9263
路径系数 标准误差 t P>|t| [95% Conf. Interval]
Degree 10212.23 2677.958 3.81 0.001 4786.172 15638.29
Closeness 0.0192705 0.2978323 0.06 0.949 -0.5841951 0.6227362
Betweenness -3580.766 1395.009 -2.57 0.014 -6407.323 -754.2087
_cons 1.029319 32.41452 0.03 0.975 -64.64873 66.70737
Consumption 所有成员: 组内R2=0.1700, 组间R2=0.1283, 总体R2= 0.1314
核心成员: 组内R2= 0.9843, 组间R2= 0.3478, 总体R2=0.3606
路径系数 标准误差 t P>|t| [95% Conf. Interval]
Degree 33.17095 1.408312 23.55 0.000 30.40991 35.932
Degree1 32.26913 0.3866577 83.46 0.000 31.50837 33.02989
Closeness 0.0000124 0.0012254 0.01 0.992 -0.00239 0.0024149
Closeness1 -3.88E-07 0.0001621 0 0.998 -0.0003193 0.0003186
Betweenness -8.587634 7.20836 -1.19 0.234 -22.71988 5.544615
Betweenness1 23.7467 2.566337 9.25 0.000 18.69737 28.79603
_cons -0.1145803 0.0744668 -1.54 0.124 -0.2605751 0.0314145
_cons1 -0.4499313 0.0216332 -20.8 0.000 -0.4924951 -0.4073675
[1] Belk R.You are What You Can Access: Sharing and Collaborative Consumption Online[J]. Journal of Business Research, 2014, 67(8): 1595-1600.
doi: 10.1016/j.jbusres.2013.10.001
[2] Nunes M, Correia J.Improving Trust Using Online Credibility Sources and Social Network Quality in P2P Marketplaces[C]//Proceedings of the 8th Iberian Conference on Information Systems and Technologies. IEEE Computer Society, 2013.
[3] Bucher E, Fieseler C, Lutz C.What’s Mine is Yours (for a Nominal Fee) - Exploring the Spectrum of Utilitarian to Altruistic Motives for Internet-Mediated Sharing[J]. Computers in Human Behavior, 2016, 62: 316-326.
doi: 10.1016/j.chb.2016.04.002
[4] Matzler K, Veider V, Kathan W.Adapting to the Sharing Economy[J]. MIT Sloan Management Review, 2015, 56(2): 71-77.
[5] 李晓雪, 赵亮. 浅析共享经济视角下全域旅游的发展趋势[J]. 当代经济, 2016(31): 17-19.
doi: 10.3969/j.issn.1007-9378.2016.31.005
[5] (Li Xiaoxue, Zhao Liang.Study on the Development Trend of Global Tourism from the Perspective of Sharing Economy[J]. Contemporary Economics, 2016(31): 17-19.)
doi: 10.3969/j.issn.1007-9378.2016.31.005
[6] 谢丹丹. 小猪短租:回归共享经济的原点[J]. 中外管理, 2015 (12): 96-97.
[6] (Xie Dandan.Xiaozhu: Return to the Origin of Sharing Economy[J]. Sino Foreign Management, 2015(12): 96-97.)
[7] 何琳. 在线短租企业商业模式分析——以小猪短租为例[J]. 现代商业, 2016(9): 44-45.
doi: 10.3969/j.issn.1673-5889.2016.09.023
[7] (He Lin.An Analysis of the Business Model of Online Short-Rental Enterprises — Taking Xiaozhu as an Example[J]. Modern Business, 2016(9): 44-45.)
doi: 10.3969/j.issn.1673-5889.2016.09.023
[8] Batagelj V.STANLEY WASSERMAN AND KATHERINE FAUST. Social Network Analysis: Methods and Applications[J]. Psychometrika, 1998, 63(1): 103-104.
[9] Newman M E J. Detecting Community Structure in Networks[J]. European Physical Journal B, 2004, 38(2): 321-330.
doi: 10.1140/epjb/e2004-00124-y
[10] Cheng M.Sharing Economy: A Review and Agenda for Future Research[J]. International Journal of Hospitality Management, 2016, 57: 60-70.
doi: 10.1016/j.ijhm.2016.06.003
[11] Ert E, Fleischer A, Magen N.Trust and Reputation in the Sharing Economy: The Role of Personal Photos in Airbnb[J]. Tourism Management, 2016, 55: 62-73.
doi: 10.1016/j.tourman.2016.01.013
[12] Edelman B G, Luca M.Digital Discrimination: The Case of Airbnb.com[OL]. Harvard Business School NOM Unit Working Paper No. 14-054.DOI: 10.2139/ssrn.2377353.
doi: 10.2139/ssrn.2377353
[13] Karlsson L, Kemperman A, Dolnicar S.May I Sleep in Your Bed? Getting Permission to Book[J]. Annals of Tourism Research, 2017, 62: 1-12.
doi: 10.1016/j.annals.2016.10.002
[14] 谢雪梅, 石娇娇. 共享经济下消费者信任形成机制的实证研究[J]. 技术经济, 2016, 35(10): 122-127.
doi: 10.3969/j.issn.1002-980X.2016.10.017
[14] (Xie Xuemei, Shi Jiaojiao.Empirical Study on the Formation Mechanism of Consumer Trust in the Sharing Economy[J]. Technology Economics, 2016, 35(10): 122-127.)
doi: 10.3969/j.issn.1002-980X.2016.10.017
[15] Wu J, Ma P, Zeng M.The Role of Service-Provider’s Attributes in Sharing Economy: A Data-driven Study from the Perspective of Trust[C]//Proceedings of the 15th Wuhan International Conference on E-Business, 2016: 67-77.
[16] Putnik G, Costa E, Alves C, et al.Analysing the Correlation Between Social Network Analysis Measures and Performance of Students in Social Network-Based Engineering Education[J]. International Journal of Technology and Design Education, 2016, 26(3): 413-437.
doi: 10.1007/s10798-015-9318-z
[17] Lopez M D R, Corrales M E V, Valencia S D R. Human Resource Management and Organizational Behavior[C] //Proceedings of the AHFE 2016 International Conference on Human Factors, 2017: 1101-1106.
[18] Jacobs W, Goodson P, Barry A E, et al.Adolescent Social Networks and Alcohol Use: Variability by Gender and Type[J]. Substance Use & Misuse, 2017, 52(4): 477-487.
doi: 10.1080/10826084.2016.1245333 pmid: 28010159
[19] Sibbald S L, Wathen C N, Kothari A, et al.Knowledge Flow and Exchange in Interdisciplinary Primary Health Care Teams (PHCTs): An Exploratory Study[J]. Journal of the Medical Library Association, 2013, 101(2): 128-137.
doi: 10.3163/1536-5050.101.2.008 pmid: 23646028
[20] Zhou Y, Guo C C, Zhang Q L, et al.Free Rider Behavior is Determined by Innate Factor or Acquired Factor?[C]// Proceedings of the 2014 International Conference on Management Science & Engineering. IEEE Computer Society, 2014: 515-522.
[21] Chang W L, Cheng B L, Hao C T.Exploring the Drifting Behavior on Different Social Media[C]//Proceedings of the 2014 Iiai 3rd International Conference on Advanced Applied Informatics (Iiai-Aai 2014). IEEE Computer Society, 2014: 535-536.
[22] 张玥, 朱庆华. 学术博客交流网络的核心—边缘结构分析实证研究[J]. 图书情报工作, 2009, 53(12): 25-29.
[22] (Zhang Yue, Zhu Qinghua.An Empirical Study on the Core— Periphery Structure Analysis of Academic Blog Communication Network[J]. Library and Information Service, 2009, 53(12): 25-29.)
[23] 张静. 基于复杂网络的微博用户群体行为研究[D]. 北京: 北京邮电大学, 2015.
[23] (Zhang Jing.Research of Micro-blog User Group Behavior Based on Complex Network [D]. Beijing: Beijing University of Posts and Telecommunications, 2015.)
[24] Gamble J, Chintakunta H, Wilkerson A, et al.Node Dominance: Revealing Community and Core-Periphery Structure in Social Networks[J]. IEEE Transactions on Signal and Information Processing over Networks, 2016, 2(2): 186-199.
doi: 10.1109/TSIPN.2016.2527923
[25] Goodman L A.Snowball Sampling[J]. The Annals of Mathematical Statistics, 1961, 32(1): 148-170.
[26] Borgatti S P, Mehra A, Brass D J, et al.Network Analysis in the Social Sciences[J]. Science, 2009, 323(5916): 892-895.
[27] Weng C S.Identifying the Core/Periphery Technological Positions from Affiliation Networks: The Network Analysis of 2-Mode[C]//Proceedings of 2011 Picmet 11: Technology Management in the Energy-Smart World. IEEE Computer Society, 2011.
[28] Johnson J D.Ucinet: A Software Tool for Network Analysis[J]. Communication Education, 1987, 36(1): 92-94.
doi: 10.1080/03634528709378647
[29] Freeman L C. Centrality in Social Networks Conceptual Clarification[J]. Social Networks, 1978-1979, 1(3): 215-239.
[30] Faust K.Centrality in Affiliation Networks[J]. Social Networks, 1997, 19(2): 157-191.
[31] Kramer W.A Hausman Test with Trending Data[J]. Economics Letters, 1985, 19(4): 323-325.
doi: 10.1016/0165-1765(85)90228-9
[32] Signh J.Estimation of Effects in a Fixed Effect Model[J]. The Annals of Mathematical Statistics, 1969, 40(2): 720-727.
[1] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[2] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[3] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[4] Zhe Hu,Xianjin Zha,Yalan Yan. Interactive Behaviors of Online Health Community Users in Emergency[J]. 数据分析与知识发现, 2019, 3(12): 10-20.
[5] Yuxiang Zhao,Zhouying Liu,Shijie Song. Exploring the Influential Factors of Askers’ Intention to Pay in Knowledge Q&A Platforms[J]. 数据分析与知识发现, 2018, 2(8): 16-30.
[6] Jiang Wu,Chaocheng He,Panhao Ma. Analyzing Interaction of MOOC Users with Iteration Super Centrality[J]. 数据分析与知识发现, 2017, 1(8): 1-8.
[7] Xiaowei Chen,Yutian Shi. Identifying Key Nodes in Social Network with Improved PageRank Algorithm[J]. 数据分析与知识发现, 2017, 1(8): 68-75.
[8] Xia Lixin,Yang Jinqing,Cheng Xiufeng. Collecting Mobile Data Based on Content Awareness——An Empirical Study[J]. 数据分析与知识发现, 2017, 1(5): 82-93.
[9] Tong Guoping, Sun Jianjun. User Behavior Analysis Based on Search Engine Log[J]. 现代图书情报技术, 2015, 31(7-8): 80-88.
[10] Huang Wenbin, Xu Shanchuan, Ma Long, Wang Jun. Analysis of Mobile User Behaviors with Telecommunication Data[J]. 现代图书情报技术, 2015, 31(5): 80-87.
[11] Yang Ning, Huang Feihu, Wen Yi, Chen Yunwei. An Opinion Evolution Model Based on the Behavior of Micro-blog Users[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[12] Chen Yong, Li Honglian, Lv Xueqiang. Analysis for the Search Behavior of Web Users[J]. 现代图书情报技术, 2014, 30(12): 10-17.
[13] He Jing, Guo Jinli, Xu Xuejuan. Analysis on Statistical Characteristic and Dynamics for User Behavior in Microblog Communities[J]. 现代图书情报技术, 2013, 29(7/8): 94-100.
[14] Zhang Han, Liu Shuangmei. Comparative Analysis of Centrality Indices in Extracting Concepts from Semantic Predication Network——Based on Disease Treatment Research[J]. 现代图书情报技术, 2013, (6): 30-35.
[15] Teng Guangqing, Bi Datian, Ren Jing, Chen Xiaomei. Study on Semantic Closeness of User Tags in Folksonomy[J]. 现代图书情报技术, 2013, (12): 48-54.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn