Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (7): 82-89    DOI: 10.11925/infotech.2096-3467.2017.07.10
Orginal Article Current Issue | Archive | Adv Search |
Feature Selection Based on Modified QPSO Algorithm
Li Zhipeng(), Li Weizhong
Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
Download: PDF (724 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This study proposes an algorithm for feature selection aiming to improve the precision and efficiency of text classification. [Methods] First, we selected features based on their characteristics. Then, we constructed the algorithm with extension theory to strengthen its searching ability. Finally, we compared the performance of different methods for text classification. [Results] Compared with IG, MI and QPSO, the proposed algorithm had better accuracy in feature selection. [Limitations] The efficiency of our algorithm needs to be improved. [Conclusions] The modified QPSO Algorithm is an effective way to select features.

Key wordsFeature Selection      Quantum-behaved Particle Swarm      Extenics      Niche      Fitness Sharing     
Received: 27 May 2017      Published: 13 September 2017
ZTFLH:  TP301  

Cite this article:

Li Zhipeng,Li Weizhong. Feature Selection Based on Modified QPSO Algorithm. Data Analysis and Knowledge Discovery, 2017, 1(7): 82-89.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.07.10     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I7/82

类别 训练文档数 测试文档数
计算机 628 591
太空 506 248
军事 74 75
体育 584 489
历史 466 468
政治 573 482
经济 480 419
艺术 510 286
农业 547 435
环境 405 371
类别 判断属此类 判断不属此类
判断属此类 a b
判断不属此类 c d
类别 NOL-QPSO IG MI QPSO
P(%) R(%) F1值(%) P(%) R(%) F1值(%) P(%) R(%) F1值 P(%) R(%) F1值(%)
计算机 94.26 93.88 94.07 85.24 82.46 83.83 81.52 85.49 83.46 80.04 76.52 78.24
太空 95.21 94.54 94.87 80.59 78.96 79.77 80.92 82.57 81.74 75.83 77.20 76.51
军事 94..27 93.56 93.91 76.42 80.12 78.23 83.10 79.86 81.45 76.44 72.56 74.45
体育 93.58 94.08 93.83 84.46 85.60 85.03 79.56 81.54 80.54 69.38 76.17 72.62
历史 92.25 93.50 92.87 82.42 81.86 82.14 82.06 80.46 81.25 72.56 71.39 71.97
政治 90.10 91.92 91.00 80.88 82.43 81.65 74.28 78.54 76.35 75.18 78.66 76.88
经济 94.73 93.52 94.12 84.26 80.85 82.52 81.72 85.22 83.43 76.29 72.36 74.27
艺术 94.20 90.84 92.49 88.24 84.96 86.57 82.91 78.53 80.66 76.80 71.22 73.90
农业 95.78 94.22 94.99 80.56 76.84 78.66 80.48 79.31 79.89 67.12 76.18 71.36
环境 92.46 90.68 91.56 76.85 80.47 78.62 78.19 67.12 72.23 81.03 80.56 80.79
均值 93.684 93.074 93.378 81.992 81.455 81.723 80.474 79.864 80.168 75.067 75.282 75.174
所用方法 NOL-QPSO MI IG QPSO
运行时间(s) 1 744 1 541 1 496 1 598
[1] 何熊熊, 管俊轶, 叶宣佐. 一种基于密度和网格的簇心可确定聚类算法[J]. 控制与决策, 2017, 32(5): 913-919.
[1] (He Xiongxiong, Guan Junyi, Ye Xuanzuo.A Density-based and Grid-based Cluster Centers Determination Clustering Algorithm[J]. Control and Decision, 2017, 32(5): 913-919.)
[2] 任俊亮, 邢清华, 李强, 等. 采用自适应概率粒子群算法的反导预警资源调度方法[J]. 空军工程大学学报: 自然科学版, 2014, 15(6): 45-48.
doi: 10.3969/j.issn.1009-3516.2014.06.010
[2] (Ren Junliang, Xing Qinghua, Li Qiang, et al.Resource Scheduling Method of Missile Defense Ear1y Warning System Based on Self-Adaptive Probability Particle Swam Optimization[J]. Journal of Air Force Engineering University: Natural Science Edition, 2014, 15(6): 45-48.)
doi: 10.3969/j.issn.1009-3516.2014.06.010
[3] Sun J, Feng B, Xu W B.Particle Swarm Optimization with Particle Having Quantum Behavior [C]//Proceedings of Congress on Evolutionary Computation, Portland.USA: IEEE Press, 2004, 1: 325-331.
[4] Sun J, Xu W B, Feng B.Adaptive Parameter Control for Quantum Behaved Particle Swarm Optimization on Individual Level[C]//Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE Press, 2005: 3049-3054.
[5] 路永和, 梁明辉. 遗传算法在改进文本特征提取方法中的应用[J]. 现代图书情报技术, 2014(4): 48-57.
[5] (Lu Yonghe, Liang Minghui.Improvement of Text Feature Extraction with Genetic Algorithm[J]. New Technology of Library and Information Service, 2014(4): 48-57.)
[6] 刘逵, 周竹荣. 基于野草算法的文本特征选择[J]. 计算机应用, 2012, 32(8): 2245-2249.
doi: 10.3724/SP.J.1087.2012.02245
[6] (Liu Kui, Zhou Zhurong.Text Feature Selection Method Based on Invasive Weed Optimization[J]. Journal of Computer Applications, 2012, 32(8): 2245-2249.)
doi: 10.3724/SP.J.1087.2012.02245
[7] 林令娟, 刘希玉. 基于微粒群优化的快速K-近邻分类算法[J]. 山东科学, 2009, 22(1): 13-16.
[7] (Lin Lingjuan, Liu Xiyu.A Particle Swarm Optimization Based Rapid K-nearest Neighbor Classification Algorithm[J]. Shandong Science, 2009, 22(1): 13-16.)
[8] 李欢, 焦建民. 简化的粒子群优化快速KNN分类算法[J]. 计算机工程与应用, 2008, 44(32): 57-59.
[8] (Li Huan, Jiao Jianmin.Improved Simplified PSO KNN Classification Algorithm[J]. Computer Engineering and Applications, 2008, 44(32): 57-59.)
[9] 拓守恒. 基于改进PSO的SVM文本分类研究[J]. 电脑开发与应用, 2010, 23(10): 3-5, 8.
doi: 10.3969/j.issn.1003-5850.2010.10.002
[9] (Tuo Shouheng.Research on Text Categorization Based on Support Vector Machine Optimized by Particle Swarm Optimization Algorithm[J]. Computer Development & Applications, 2010, 23(10): 3-5, 8.)
doi: 10.3969/j.issn.1003-5850.2010.10.002
[10] 孙洋. 粒子群算法的改进及其在文本分类上的应用[J]. 中央民族大学学报: 自然科学版, 2008, 17(3): 57-62.
[10] (Sun Yang.The Improvement of PSO Algorithm and Application of Text Classifier[J]. Journal of the Central University for Nationalities: Natural Sciences Edition, 2008, 17(3): 57-62.)
[11] 徐辉. 基于混沌二进制粒子群优化的KNN文本分类算法[J]. 微电子学与计算机, 2012, 29(8): 204-208.
[11] (Xu Hui.KNN Text Classification Algorithm Based on Chaotic Binary Particle Swarm Optimization[J]. Microelectronics & Computer, 2012, 29(8): 204-208.)
[12] 谭德坤. 基于混沌微粒群算法的文本分类研究[J]. 计算机应用研究, 2010, 27(12): 4464-4466.
doi: 10.3969/j.issn.1001-3695.2010.12.018
[12] (Tan Dekun.Research of Chinese Text Categorization Based on Chaotic Particle Swarm Optimization[J]. Application Research of Computers, 2010, 27(12): 4464-4466.)
doi: 10.3969/j.issn.1001-3695.2010.12.018
[13] 朱颢东, 钟勇. 基于并行二进制免疫量子粒子群优化的特征选择方法[J]. 控制与决策, 2010, 25(1): 53-63.
[13] (Zhu Haodong, Zhong Yong.Feature Selection Method Based on PBIQPSO[J]. Control and Decision, 2010, 25(1): 53-63.)
[14] 孔莉芳, 张虹. 用于特征子集选择的异步并行微粒群优化方法[J]. 控制与决策, 2012, 27(7): 967-973.
[14] (Kong Lifang, Zhang Hong.Asynchronous Parallel Particle Swarm Optimizer for Feature Subset Selection[J]. Control and Decision, 2012, 27(7): 967-973.)
[15] 巩敦卫, 胡滢, 张勇. 基于多目标微粒群优化的异质数据特征选择[J]. 电子学报, 2014, 42(7): 1320-1326.
doi: 10.3969/j.issn.0372-2112.2014.07.012
[15] (Gong Dunwei, Hu Ying, Zhang Yong.Feature Selection of Heterogeneous Data Based on Multi-objective Particle Swarm Optimization[J]. Acta Electronica Sinica, 2014, 42(7): 1320-1326.)
doi: 10.3969/j.issn.0372-2112.2014.07.012
[16] 付强, 王刚, 王明宇, 等. 基于小生境遗传算法的制导雷达误差估计[J]. 空军工程大学学报: 自然科学版, 2011, 11(6): 50-53.
doi: 10.3969/j.issn.1009-3516.2011.06.010
[16] (Fu Qiang, Wang Gang, Wang Mingyu, et al.Research of Guidance Radar Error Estimation Based on the Niche Genetic Algorithm[J]. Journal of Air Force Engineering University: Natural Science Edition, 2011, 11(6): 50-53.)
doi: 10.3969/j.issn.1009-3516.2011.06.010
[17] 杨春燕, 蔡文. 可拓学[M]. 北京: 科学出版社, 2014: 18-96.
[17] (Yang Chunyan, Cai Wen.Extenics[M]. Beijing: Science Press, 2014: 18-96.)
[18] 赵敏, 林道荣, 瞿波, 等. 一种新的基于小生境模拟退火的遗传算法[J].辽宁工程技术大学学报: 自然科学版, 2013, 32(3): 367-372.
[18] (Zhao Min, Lin Daorong, Qu Bo, et al.A New Genetic Algorithm Based on Niche Simulated Annealing[J]. Journal of Liaoning Technical University: Natural Science, 2013, 32(3): 367-372.)
[19] 李中华, 张泰山. 可拓聚类适应度共享小生境遗传算法研究[J]. 哈尔滨工业大学学报, 2016, 48(5): 178-183.
doi: 10.11918/j.issn.0367-6234.2016.05.029
[19] (Li Zhonghua, Zhang Taishan.Research of Fitness Sharing Niche Genetic Algorithms Based on Extension Clustering[J]. Journal of Harbin Institute of Technology, 2016, 48(5): 178-183.)
doi: 10.11918/j.issn.0367-6234.2016.05.029
[20] 曾维宏. 基于粗糙集理论的数据挖掘算法研究[D]. 郑州: 郑州大学, 2005.
[20] (Zeng Weihong.Research of Reduction Algorithm Based on Rough Set Theory [D]. Zhengzhou: Zhengzhou University, 2005.)
[21] 张珂, 黄永峰, 李星. 一种基于适应度和节点聚类的P2P拓扑建模方法[J]. 电子学报, 2010, 38(7): 1634-1640.
[21] (Zhang Ke, Huang Yongfeng, Li Xing.A Model for Topology of P2P Network Based on Fitness and Node Clustering[J]. Acta Electronica Sinica, 2010, 38(7): 1634-1640.)
[22] 谭熠峰, 孙婷婷, 徐新民. 基于动态因子和共享适应度的改进粒子群算法[J]. 浙江大学学报: 理学版, 2016, 43(6): 696-700.
doi: 10.3785/j.issn.1008-9497.2016.06.014
[22] (Tan Yifeng, Sun Tingting, Xu Xinmin.A Modified Particle Swarm Optimization Algorithm Based on Dynamic Learning Factors and Sharing Method[J]. Journal of Zhejiang University: Science Edition, 2016, 43(6): 696-700.)
doi: 10.3785/j.issn.1008-9497.2016.06.014
[23] 邵鹏, 吴志健, 周炫余, 等. 基于折射原理反向学习模型的改进粒子群算法[J]. 电子学报, 2015, 43(11): 2137-2144.
doi: 10.3969/j.issn.0372-2112.2015.11.001
[23] (Shao Peng, Wu Zhijian, Zhou Xuanyu, et al.Improved Particle Swarm Optimization Algorithm Based on Opposite Learning of Refraction[J]. Acta Electronica Sinica, 2015, 43(11): 2137-2144.)
doi: 10.3969/j.issn.0372-2112.2015.11.001
[1] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[2] Jiaming Liang,Jie Zhao,Zhou Jianlong,Zhenning Dong. Detecting Collusive Fraudulent Online Transaction with Implicit User Behaviors[J]. 数据分析与知识发现, 2019, 3(5): 125-138.
[3] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[4] Zhanglu Tan,Zhaogang Wang,Han Hu. Study on a Method of Feature Classification Selection Based on χ2 Statistics[J]. 数据分析与知识发现, 2019, 3(2): 72-78.
[5] Tingxin Wen,Yangzi Li,Jingshuang Sun. Extracting Text Features with Improved Fruit Fly Optimization Algorithm[J]. 数据分析与知识发现, 2018, 2(5): 59-69.
[6] Zhang Yue,Wang Dongbo,Zhu Danhao. Segmenting Chinese Words from Food Safety Emergencies[J]. 数据分析与知识发现, 2017, 1(2): 64-72.
[7] Li Xiangdong,Ruan Tao,Liu Kang. Automatic Classification of Documents from Wikipedia[J]. 数据分析与知识发现, 2017, 1(10): 43-52.
[8] Lu Yonghe,Chen Jinghuang. Optimizing Feature Selection Method for Text Classification with Shuffled Frog Leaping Algorithm[J]. 数据分析与知识发现, 2017, 1(1): 91-101.
[9] Liu Hongguang,Ma Shuanggang,Liu Guifeng. Classifying Chinese News Texts with Denoising Auto Encoder[J]. 现代图书情报技术, 2016, 32(6): 12-19.
[10] Meng Yuan,Wang Hongwei. Evaluating Online Reviews Based on Text Content Features[J]. 现代图书情报技术, 2016, 32(4): 40-47.
[11] Gao Feng, Xiong Jing, Liu Yongge. Research on the Extenics of Oracle Bone Inscriptions Interpretation Based on HowNet[J]. 现代图书情报技术, 2015, 31(7-8): 58-64.
[12] Li Gang, Ye Guanghui, Zhang Yan. Feature Recognition of Niche Expert——Empirical Analysis Based on MetaFilter Dataset[J]. 现代图书情报技术, 2015, 31(6): 71-77.
[13] Li Xiangdong, Ba Zhichao, Huang Li. Allocation and Multi-granularity[J]. 现代图书情报技术, 2015, 31(5): 42-49.
[14] Xu Dongdong, Wu Shaobo. An Improved TF-IDF Feature Selection Based on Categorical Description[J]. 现代图书情报技术, 2015, 31(3): 39-48.
[15] Tan Xueqing, Zhou Tong, Luo Lin. A Text Classification Algorithm Based on the Average Category Similarity[J]. 现代图书情报技术, 2014, 30(9): 66-73.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn