Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (2): 64-73    DOI: 10.11925/infotech.2096-3467.2017.0929
Current Issue | Archive | Adv Search |
The Evolution of Online Public Opinion Based on Spatial Autocorrelation
Jingqi Wang1,Rui Li1,2(),Huayi Wu1,2
1(State Key Laboratory of Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)
2(Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China)
Download: PDF(2194 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper aims to investigate the evolution of online public opinion by analyzing the spatial-temporal distribution patterns of topic evolution. [Methods] First, we used the LDA model to extract topics from news and then calculated the quantitative topic intensity index to measure their popularity. Second, we adopted spatial autocorrelation method to examine the distribution of topic intensity on “tourism” as well as its changes over time based on Moran’s I Index. [Results] The global distribution of topic intensity was clustered and characterized by the global Moran’s I index. The local distribution of topic intensity had hot spots, abnormal high values and low values. [Limitations] Only collected data from Xinhuanet, which might yield in-complete results. [Conclusions] The proposed method could effectively extract the spatial-temporal patterns of online public opinion, which improves the decision-making and early warning mechanism.

Key wordsSpatial Autocorrelation      Moran’s I Index      LDA Model      Topic Evolution      Internet Public Opinion     
Received: 18 September 2017      Published: 07 March 2018

Cite this article:

Jingqi Wang,Rui Li,Huayi Wu. The Evolution of Online Public Opinion Based on Spatial Autocorrelation. Data Analysis and Knowledge Discovery, 2018, 2(2): 64-73.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.0929     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I2/64

[1] 朱恒民, 苏新宁, 张相斌, 等. 互联网舆情演化的动态网络模型研究[J]. 情报理论与实践, 2010, 33(10): 75-78.
[1] (Zhu Hengmin, Su Xinning, Zhang Xiangbin, et al.The Evolution Analysis of Online Public Opinion Based on Dynamic Network Model[J]. Information Studies: Theory & Application, 2010, 33(10): 75-78.)
[2] 洪宇, 张宇, 刘挺, 等. 话题检测与跟踪的评测及研究综述[J]. 中文信息学报, 2007, 21(6): 71-87.
[2] (Hong Yu, Zhang Yu, Liu Ting, et al.Topic Detection and Tracking Review[J]. Journal of Chinese Information Processing, 2007, 21(6): 71-87.)
[3] 林萍, 黄卫东. 基于LDA模型的网络舆情事件话题演化分析[J]. 情报杂志, 2013, 32(12): 26-30.
[3] (Lin Ping, Huang Weidong.Event Topic Evolution of Network Public Opinions: An Analysis Based on LDA Model[J]. Journal of Intelligence, 2013, 32(12): 26-30.)
[4] 王来华, 张丽红. 略论舆情空间[J]. 理论与现代化, 2008(3): 91-94.
[4] (Wang Laihua, Zhang Lihong.Public Opinion Space[J]. Theory and Modernization, 2008 (3): 91-94.)
[5] Sanderson M, Kohler J.Analyzing Geographic Queries[C]// Proceedings of SIGIR Workshop on Geographic Information Retrieval.2004.
[6] 万源. 基于语义统计分析的网络舆情挖掘技术研究[D]. 武汉: 武汉理工大学, 2012.
[6] (Wan Yuan.Research on Mining of Internet Public Opinion Based on Semantic and Statistic Analysis [D]. Wuhan: Wuhan University of Technology, 2012.)
[7] 蒋锴. 含地理位置信息的社交媒体挖掘及应用[D]. 合肥: 中国科学技术大学, 2014.
[7] (Jiang Kai.Geo-referenced Social Media Mining and Its Application [D]. Hefei: University of Science and Technology of China, 2014.)
[8] 王劲峰, 葛咏, 李连发, 等. 地理学时空数据分析方法[J]. 地理学报, 2014, 69(9): 1326-1345.
[8] (Wang Jinfeng, Ge Yong, Li Lianfa, et al.Spatiotemporal Data Analysis in Geography[J]. Acta Geographica Sinica, 2014, 69(9): 1326-1345.)
[9] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[10] 单斌, 李芳. 基于LDA话题演化研究方法综述[J]. 中文信息学报, 2010, 24(6): 43-49, 68.
[10] (Shan Bin, Li Fang.A Survey of Topic Evolution Based on LDA[J]. Journal of Chinese Information Processing, 2010, 24(6): 43-49, 68.)
[11] 赵爱华, 刘培玉, 郑燕. 基于LDA的新闻话题子话题划分方法[J]. 小型微型计算机系统, 2013, 34(4): 732-737.
[11] (Zhao Aihua, Liu Peiyu, Zheng Yan.Subtopic Division in News Topic Based on Latent Dirichlet Allocation[J]. Journal of Chinese Computer Systems, 2013, 34(4): 732-737.)
[12] 王少鹏, 彭岩, 王洁, 等. 基于LDA的文本聚类在网络舆情分析中的应用研究[J]. 山东大学学报: 理学版, 2014, 49(9): 129-134.
[12] (Wang Shaopeng, Peng Yan, Wang Jie, et al.Research of the Text Clustering Based on LDA Using in Network Public Opinion Analysis[J]. Journal of Shandong University: Natural Science, 2014, 49(9): 129-134.)
[13] 史剑虹, 陈兴蜀, 王文贤. 基于隐主题分析的中文微博话题发现[J]. 计算机应用研究, 2014, 31(3): 700-704.
[13] (Shi Jianhong, Chen Xingshu, Wang Wenxian.Discovering Topic from Chinese Microblog Based on Hidden Topics Analysis[J]. Application Research of Computers, 2014, 31(3): 700-704.)
[14] 曹丽娜, 唐锡晋. BBS话题的地理分布分析[J]. 系统科学与数学, 2016, 36(5): 671-682.
[14] (Cao Li’na, Tang Xijin.Analysis of Topics Distribution in Geography Based on BBS[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(5): 671-682.)
[15] 王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报: 信息科学版, 2016, 41(3): 290-297.
[15] (Wang Yandong, Li Hao, Wang Teng, et al.The Mining and Analysis of Emergency Information in Sudden Events Based on Social Media[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 290-297.)
[16] 陈涛, 林杰. 基于搜索引擎关注度的网络舆情时空演化比较分析——以谷歌趋势和百度指数比较为例[J]. 情报杂志, 2013, 32(3): 7-10, 16.
[16] (Chen Tao, Lin Jie.Comparative Analysis of Temporal-Spatial Evolution of Online Public Opinion Based on Search Engine Attention — Cases of Google Trends and Baidu Index[J]. Journal of Intelligence, 2013, 32(3): 7-10, 16.)
[17] 刘国巍, 程国辉, 姜金贵, 等. 时空分异视角下非常规突发事件网络舆情演化研究——以“上海12.31踩踏事件”为例[J]. 情报杂志, 2015, 34(6): 126-130, 150.
[17] (Liu Guowei, Cheng Guohui, Jiang Jingui, et al.On the Evolution of the Unconventional Emergency Network Public Opinion from the Perspective of Spatial-temporal Differentiation — Taking “Shanghai 12.31 Stampede” as an Example[J]. Journal of Intelligence, 2015, 34(6): 126-130, 150.)
[18] Heinrich G.Parameter Estimation for Text Analysis [R]. vsonix GmbH and University of Leipzig, 2008.
[19] 崔凯. 基于LDA的主题演化研究与实现[D]. 长沙: 国防科学技术大学, 2010.
[19] (Cui Kai.The Research and Implementation of Topic Evolution Based on LDA [D]. Changsha: National University of Defense Technology, 2010.)
[20] Odland J.Spatial Autocorrelation[M]. London: SAGE Publications, 1988.
[21] 秦昆. GIS空间分析理论与方法[M]. 第二版. 武汉: 武汉大学出版社, 2010.
[21] (Qin Kun.Theories and Methods of Spatial Analysis in GIS [M]. The 2nd Edition. Wuhan: Wuhan University Press, 2010.)
[22] 宋雪娟. 西安市住宅价格空间分异与时空演变规律分析[D]. 西安: 陕西师范大学, 2011.
[22] (Song Xuejuan.Spatial and Temporal Evolution Analysis of Housing Prices in Xi’an[D]. Xi’an: Shaanix Normal University, 2011.)
[23] Anselin L.Local Indicators of Spatial Association—LISA[J]. Geographical Analysis, 1995, 27(2): 93-115.
[24] 张华平. NLPIR汉语分词系统[EB/OL]. [2016-08-17]. .
[24] (Zhang Huaping. NLPIR Chinese Word Segmentation System [EB/OL]. [2016-08-17].
[25] 中华人民共和国国家统计局. 最新县及县以上行政区划代码(截止2016年7月31日)[DB/OL]. [2016-08-17]. .
[25] (National Bureau of Statistics of China. Code of Administrative Divisions of County Level or above (by July 31, 2016) [DB/OL]. [2016-08-17].
[26] ESRI. ArcGIS[EB/OL]. [2016-08-01]. .
[1] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[2] Hongqinling Wang,Zhichao Ba,Gang Li. Conversational Topic Intensity Calculation and Evolution Analysis of WeChat Group[J]. 数据分析与知识发现, 2019, 3(2): 33-42.
[3] Yanshuang Mei,Hengmin Zhu,Jing Wei. A Study on the Mechanism of Media Collaboration on the Spread of Internet Public Opinion[J]. 数据分析与知识发现, 2019, 3(2): 65-71.
[4] Yuemei Xu,Sining Lv,Lianqiao Cai,Xiaoya Zhang. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
[5] Yanhua Xu,Yujie Miao,Lin Miao,Xueqiang Lv. Generating HSK Writing Essays with LDA Model[J]. 数据分析与知识发现, 2018, 2(9): 80-87.
[6] Longjia Jia,Bangzuo Zhang. Classifying Topics of Internet Public Opinion from College Students: Case Study of Sina Weibo[J]. 数据分析与知识发现, 2018, 2(7): 55-62.
[7] Li Wang,Lixue Zou,Xiwen Liu. Visualizing Document Correlation Based on LDA Model[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
[8] Weilin He,Guohe Feng,Hongling Xie. Analyzing Scientific Literature with Content Similarity - Topics over Time Model[J]. 数据分析与知识发现, 2018, 2(11): 64-72.
[9] Zhen Li,Shengchun Ding,Nan Wang. Identifying Topics of Online Public Opinion[J]. 数据分析与知识发现, 2017, 1(8): 18-30.
[10] Xiaofei Fang,Xiaoxi Huang,Rongbo Wang,Zhiqun Chen,Xiaohua Wang. Identifying Hot Topics from Mobile Complaint Texts[J]. 数据分析与知识发现, 2017, 1(2): 19-27.
[11] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[12] Zhang Lei,Ma Jing,Li Dandan,Shen Yang. Hypernetwork Model for Semantic Social Network and Automatic Identification of Key Nodes[J]. 现代图书情报技术, 2016, 32(3): 8-17.
[13] Huang Wei,Yu Hui,Li Yuefeng. Review of Online Anti-terrorism Research in China[J]. 现代图书情报技术, 2016, 32(11): 1-10.
[14] Zhao Dongxiao,Wang Xiaoyue,Bai Rujiang,Liu Ziqiang. Semantic Text Mining Methodologies for Intelligence Analysis[J]. 现代图书情报技术, 2016, 32(10): 13-24.
[15] Xu Yuemei,Li Yang,Liang Ye,Cai Lianqiao. Analyzing Evolution of News Topics with Manifold Learning[J]. 现代图书情报技术, 2016, 32(10): 59-69.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn