Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (7): 26-33    DOI: 10.11925/infotech.2096-3467.2017.1067
Current Issue | Archive | Adv Search |
Assessing Trust-Based Users’ Influence in Social Media
Jing Dong, Zhang Dayong()
Key Laboratory of Interactive Media Design and Equipment Services Innovation, Harbin Institute of Technology, Harbin 150001,China
Download: PDF (1013 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] The paper studies the impacts of trust on social media users’ influence to detect factors affecting information dissemination, which could benefit the development of social media. [Methods] We proposed a comprehensive evaluation index based on the direct and indirect trust, as well as the local and global influence of each individual user of social media. [Results] Simulations based on SIR model showed that original message from individuals with the highest comprehensive index value could reach the largest number of users. [Limitations] The collected data was not comprehensive, which might yield biased results. [Conclusions] The proposed index could effectively measure the trust level of each individual in social media.

Key wordsSocial Media      Direct Trust      Comprehensive Trust      Influence     
Received: 26 October 2017      Published: 15 August 2018
ZTFLH:  分类号: G203  

Cite this article:

Jing Dong,Zhang Dayong. Assessing Trust-Based Users’ Influence in Social Media. Data Analysis and Knowledge Discovery, 2018, 2(7): 26-33.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.1067     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I7/26

排序 直接信任值前10名节点 间接信任值前10名节点 综合信任值前10名节点
节点编号 标准化值 节点编号 标准化值 节点编号 标准化值
1 ID6 0.124 ID502 0.012 ID119 1.103
2 ID782 0.123 ID34 0.011 ID78 0.831
3 ID96 0.119 ID71 0.010 ID202 0.813
4 ID111 0.117 ID1187 0.009 ID76 0.705
5 ID2272 0.116 ID366 0.008 ID502 0.690
6 ID23 0.115 ID12 0.008 ID2002 0.684
7 ID1187 0.114 ID993 0.007 ID117 0.683
8 ID3012 0.113 ID801 0.006 ID336 0.647
9 ID76 0.111 ID876 0.006 ID2370 0.626
10 ID139 0.109 ID432 0.005 ID769 0.610
[1] 都平平, 郭琪, 李雨珂, 等. 基于社交媒体的网络学科信息交互推广服务[J]. 图书情报工作, 2014, 58(2): 84-90.
doi: 10.13266/j.issn.0252-3116.2014.02.014
[1] (Du Pingping, Guo Qi, Li Yuke, et al.Interactive Promotion Service of Discipline Information Based on Social Media Networks[J]. Library and Information Service, 2014, 58(2): 84-90. )
doi: 10.13266/j.issn.0252-3116.2014.02.014
[2] Kuhlman C J, Kumar V S A, Ravi S S. Controlling Opinion Propagation in Online Networks[J]. Computer Networks, 2013, 57: 2121-2132.
doi: 10.1016/j.comnet.2012.11.025
[3] Oh O, Eom C, Rao H R.Role of Social Media in Social Change: An Analysis of Collective Sense Making During the 2011 Egypt Revolution[J]. Information Systems Research, 2015, 26(1): 210-223.
doi: 10.1287/isre.2015.0565
[4] 胡吉明. 社会网络环境下的信息传播机制[J]. 情报科学, 2013, 33(1): 15-18.
[4] (Hu Jiming.Mechanism of Information Dissemination Under Socialization Networking Environment[J]. Information Science, 2013, 33(1): 15-18. )
[5] 李栋, 徐志明, 李生, 等. 在线社会网络中信息扩散[J]. 计算机学报, 2014, 37(1): 189-206.
doi: 10.3724/SP.J.1016.2014.00189
[5] (Li Dong, Xu Zhiming, Li Sheng, et al.A Survey on Information Diffusion in Online Social Networks[J]. Chinese Journal of Computers, 2014, 37(1): 189-206. )
doi: 10.3724/SP.J.1016.2014.00189
[6] Szell M, Grauwin S, Ratti C.Contraction of Online Response to Major Events[J]. PLoS ONE, 2014, 9(2): e89052.
doi: 10.1371/journal.pone.0089052 pmid: 3935844
[7] Kalai A, Zayani C A, Amous I, et al.Social Collaborative Service Recommendation Approach Based on User’s Trust and Domain-Specific Expertise[J]. Future Generation Computer Systems, 2018, 80: 355-367.
doi: 10.1016/j.future.2017.05.036
[8] 翟学伟. 信任的本质及其文化[J]. 社会, 2014, 34(1): 1-26.
[8] (Zhai Xuewei.The Essence of Trust and Its Culture[J]. Chinese Journal of Sociology, 2014, 34(1): 1-26. )
[9] Yen Y F, Tseng J F, Wang H K.The Effect of Internal Social Capital on Knowledge Sharing[J]. Knowledge Management Research & Practice, 2015, 13(2): 214-224.
doi: 10.1057/kmrp.2013.43
[10] Oliveira T, Alhinho M, Rita P, et al.Modelling and Testing Consumer Trust Dimensions in E-Commerce[J]. Computers in Human Behavior, 2017, 71: 153-164.
doi: 10.1016/j.chb.2017.01.050
[11] Corritore C L, Kracher B, Wiedenbeck S.On-line Trust: Concepts, Evolving Themes, A Model[J]. International Journal of Human-Computer Studies, 2003, 58(6): 737-758.
doi: 10.1016/S1071-5819(03)00041-7
[12] Beldad A, De Jong M, Steehouder M.How Shall I Trust the Faceless and the Intangible? A Literature Review on the Antecedents of Online Trust[J]. Computers in Human Behavior, 2010, 26(5): 857-869.
doi: 10.1016/j.chb.2010.03.013
[13] Roy A, Singhal A, Srivastava J.Formation and Reciprocation of Dyadic Trust[J]. ACM Transactions on Internet Technology, 2017, 17(2): Article No. 15.
[14] 赵竞, 孙晓军, 周宗奎, 等. 网络交往中的人际信任[J]. 心理科学进展, 2013, 21(8): 1493-1501.
doi: 10.3724/SP.J.1042.2013.01493
[14] (Zhao Jing, Sun Xiaojun, Zhou Zongkui, et al.Interpersonal Trust in Online Communication[J]. Advances in Psychological Science, 2013, 21(8): 1493-1501. )
doi: 10.3724/SP.J.1042.2013.01493
[15] Utz S.Show Me Your Friends and I will Tell You What Type of Person You Are: How One’s Profile, Number of Friends, and Type of Friends Influence Impression Formation on Social Network Sites[J]. Journal of Computer-Mediated Communication, 2010, 15(2): 314-335.
doi: 10.1111/jcmc.2010.15.issue-2
[16] Sani N S, Tabriz F N.A New Strategy in Trust-Based Recommender System Using K-Means Clustering[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(9): 152-156.
doi: 10.14569/IJACSA.2017.080922
[17] 詹姆斯·S·科尔曼. 社会理论的基础[M]. 邓方译. 北京: 社会科学文献出版社, 1999: 108.
[17] (Coleman J S.Foundations of Social Theory[M]. Translated by Deng Fang. Beijing: Social Sciences Academic Press, 1999: 108. )
[18] Roghanizad M M, Neufeld D J. Intuition, Risk,the Formation of Online Trust[J]. Computers in Human Behavior, 2015, 50: 489-498.
doi: 10.1016/j.chb.2015.04.025
[19] 陈婷, 朱青, 周梦溪, 等. 社交网络环境下基于信任的推荐算法[J]. 软件学报, 2017, 28(3): 721-731.
doi: 10.13328/j.cnki.jos.005159
[19] (Chen Ting, Zhu Qing, Zhou Mengxi, et al.Trust-Based Recommendation Algorithm in Social Network[J]. Journal of Software, 2017, 28(3): 721-731. )
doi: 10.13328/j.cnki.jos.005159
[20] Lewis K, Kaufman J, Gonzalez M, et al.Tastes, Ties, and Time: A New Social Network Dataset Using Facebook. com[J]. Social Networks, 2008, 30(4): 330-342.
doi: 10.1016/j.socnet.2008.07.002
[21] Aral S, Walker D.Identifying Influential and Susceptible Members of Social Networks[J]. Science, 2012, 337: 337-341.
doi: 10.1126/science.1215842 pmid: 22722253
[22] 马磊. 机会、选择和目标——社会网的形成机制及其对新媒体研究的启示[J]. 社会科学, 2015(9): 184-191.
[22] (Ma Lei.Opportunities, Choices and Goals —— The Formation Mechanism of Social Networks and Its Implications to Social Media Research[J]. Journal of Social Sciences, 2015(9): 184-191. )
[23] Ruan Y, Durresi A.A Survey of Trust Management Systems for Online Social Communities —— Trust Modeling, Trust Inference and Attacks[J]. Knowledge-Based Systems, 2016, 106: 150-163.
doi: 10.1016/j.knosys.2016.05.042
[24] 戴维·诺克, 杨松. 社会网络分析[M]. 李兰译. 上海: 格致出版社, 2012: 112.
[24] (Knoke D, Yang S.Social Network Analysis[M]. Translated by Li Lan. Shanghai: Truth & Wisdom Press, 2012: 112.)
[25] 李勇军, 代亚非. 对等网络信任机制研究[J]. 计算机学报, 2010, 33(3): 390-405.
doi: 10.3724/SP.J.1016.2010.00390
[25] (Li Yongjun, Dai Yafei.Research on Trust Mechanism for Peer-to-Peer Network[J]. Chinese Journal of Computers, 2010, 33(3): 390-405. )
doi: 10.3724/SP.J.1016.2010.00390
[26] 王余斌, 王成良, 文俊浩. 基于用户评论评分与信任度的协同过滤算法[J].计算机应用研究, 2018, 35(5). .
[26] (Wang Yubin, Wang Chengliang, Wen Junhao.Research on Collaborative Filtering Recommendation Algorithm Based on Ratings Reviews and User Trust[J].Application Research of Computers, 2018, 35(5).
[27] 张伟. 复杂开放网络中的多主体意见演化模型及其仿真[J]. 情报杂志, 2015, 34(9): 145-151.
doi: 10.3969/j.issn.1002-1965.2015.09.028
[27] (Zhang Wei.Model and Simulation of Multi-agent Opinions Dynamics in an Open Complex Network[J]. Journal of Intelligence, 2015, 34(9): 145-151. )
doi: 10.3969/j.issn.1002-1965.2015.09.028
[28] Qian D J, Zhang J S, Cochran D.Conjoining Speeds up Information Diffusion in Overlaying Social-Physical Networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(6): 1038-1048.
doi: 10.1109/JSAC.2013.130606
[1] Ying Tan,Jin Zhang,Lixin Xia. A Survey of Sentiment Analysis on Social Media[J]. 数据分析与知识发现, 2020, 4(1): 1-11.
[2] Liqing Qiu,Wei Jia,Xin Fan. Influence Maximization Algorithm Based on Overlapping Community[J]. 数据分析与知识发现, 2019, 3(7): 94-102.
[3] Lin Wang,Ke Wang,Jiang Wu. Public Opinion Propagation and Evolution of Public Health Emergencies in Social Media Era: A Case Study of 2018 Vaccine Event[J]. 数据分析与知识发现, 2019, 3(4): 42-52.
[4] Xiwei Wang,Duo Wang,Qingxiao Zheng,Ya’nan Wei. Information Interaction Between User and Enterprise in Online Brand Community: A Study of Virtual Reality Industry[J]. 数据分析与知识发现, 2019, 3(3): 83-94.
[5] Mingqing Zhao,Shengqiang Wu. Research on Stock Market Weighted Prediction Method Based on Micro-blog Sentiment Analysis[J]. 数据分析与知识发现, 2019, 3(2): 43-51.
[6] Xiaoxiao Zhu,Zunqi Yang,Jing Liu. Construction of an Adverse Drug Reaction Extraction Model Based on Bi-LSTM and CRF[J]. 数据分析与知识发现, 2019, 3(2): 90-97.
[7] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[8] Gang Li,Sijing Chen,Jin Mao,Yansong Gu. Spatio-Temporal Comparison of Microblog Trending Topics on Natural Disasters[J]. 数据分析与知识发现, 2019, 3(11): 1-15.
[9] Ling Wang,Qianjin Dai,Xiaojun Wu. The Study on the Temporal and Spatial Distribution of Event Tourism Based on Large-scale Tourism Early Warning Platform[J]. 数据分析与知识发现, 2018, 2(8): 31-40.
[10] Li Lei,He Daqing,Zhang Chengzhi. Survey on Social Question and Answer[J]. 数据分析与知识发现, 2018, 2(7): 1-12.
[11] Liu Junwan,Yang Bo,Wang Feifei. Ranking Scholarly Impacts Based on Citations and Academic Similarity[J]. 数据分析与知识发现, 2018, 2(4): 59-70.
[12] Wang Tingting,Wang Yu,Qin Linjie. Dividing Time Windows of Dynamic Topic Model[J]. 数据分析与知识发现, 2018, 2(10): 54-64.
[13] Shi Yutian,Zhu Qinghua,Zhao Yuxiang,Chen Xiaowei. Evaluating the Influence of China’s Webcast Platforms Based on Link Analysis[J]. 数据分析与知识发现, 2017, 1(9): 40-48.
[14] Li Baozhen,Wang Ya,Zhou Ke. Measuring Credibility of Social Media Contents Based on Bayesian Theory[J]. 数据分析与知识发现, 2017, 1(6): 83-92.
[15] Zhang Su. Information Consumption of Urban Chinese Residents: An Empirical Study Based on Dynamic Spatial Durbin Panel Model[J]. 数据分析与知识发现, 2017, 1(5): 52-61.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn