Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 25 Issue (4): 44-49    DOI: 10.11925/infotech.1003-3513.2009.04.09
Current Issue | Archive | Adv Search |
Topology of the Knowledge Communication Network in Virtual Communities——Based on CSDN
Peng Hongbin  Wang Jun
(Department of Information Management, Peking University, Beijing 100871, China)
Download: PDF (624 KB)  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper gives a systemic discussion on the Knowledge Communication Network (KCN) drawn from CSDN, trying to mine the character of the knowledge communication in virtual communities. Firstly, the authors analysis properties of the statistics, and point out that the small-world effect and scale-free property do exist in the network. Then find out the two important motifs in knowledge communication through analyzing the triangle of the network.

Key wordsVirtual community      Knowledge communication      Complex network     
Received: 24 February 2009      Published: 25 April 2009
ZTFLH: 

F713

 
Corresponding Authors: Peng Hongbin     E-mail: pkuim04.phb@163.com
About author:: Peng Hongbin,Wang Jun

Cite this article:

Peng Hongbin,Wang Jun. Topology of the Knowledge Communication Network in Virtual Communities——Based on CSDN. New Technology of Library and Information Service, 2009, 25(4): 44-49.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2009.04.09     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2009/V25/I4/44

[1] Kou Z B, Zhang C S. Reply Networks on a Bulletin Board System [J/OL]. Physical Review. E, 67(3). [2008-10-15]. http://www.au.tsinghua.edu.cn/szll/bodao/zhangchangshui/english/paper/reply_networks_on_BBS.pdf.
[2] Adamic L A, Zhang J, Bakshy E, et al. Knowledge Sharing and Yahoo Answers: Everyone Knows Something [C]. In: Proceeding of the 17th World Wide Web Conference, Beijing, 2008: 665-674.
[3] Welser H T, Gleave E, Fisher D, et al. Visualizing the Signatures of Social Roles in Online Discussion Groups [J/OL]. Journal of Social Structure,2007, 8(2). [2008-10-12]. http://oak.cats.ohiou.edu/~welser/SignaturesJoSS.PDF.version.pdf.
[4] Pawel J, Eugene A. Discovering Authorities in Question Answer Communities by Using Link Analysis[C]. In: Proceeding of the 16th ACM Conference on Information and Knowledge Management, Lisboa, 2007: 919-922.
[5] 邱均平,熊尊妍. 基于学术BBS的信息交流研究[J]. 图书馆工作与研究, 2008(8): 3-8.
[6] Sack W. Conversation Map: A Content-based Usenet Newsgroup Browser [C]. In: Proceeding of the ACM Intelligent User Interfaces Conference, 2000: 233-240.
[7] Wernicke W, Rasche F. FANMOD: a Tool For Fast Network Motif Detection [J]. Bioinformatics, 2006, 22(9): 1152–1153.
[8] 沈冯娟. 虚拟社区中的社会网络[ D ]. 兰州: 兰州大学, 2008.
[9] Watts D,Strogatz S. Collective Dynamics of “Small-world” Networks [J]. Nature, 1998, 393 (6684): 440-442.
[10] Albert R, Barabási A L. Statistical Mechanics of Complex Networks [J/OL]. Reviews of Modern Physics, 2002, 74: 47-97. [2008-03-14]. http://arxiv.org/PS_cache/cond-mat/pdf/0106/0106096v1.pdf.
[11] 约翰·斯科特 著,刘军 译. 社会网络分析法(第2版)[M]. 重庆: 重庆大学出版社, 2007.
[12] 邓肯·J·瓦茨 著, 陈禹 等译. 小小世界——有序和无序之间的网络动力学 [M]. 北京: 中国人民大学出版社, 2006.

[1] Li Wenzheng,Gu Yijun,Yan Hongli. Predicting Community Numbers with Network Bayesian Information Criterion[J]. 数据分析与知识发现, 2020, 4(4): 72-82.
[2] Xiang Li,Xiaodong Qian. Research on Impact of Commodity Online Evaluation for Consumption Convergence[J]. 数据分析与知识发现, 2019, 3(3): 102-111.
[3] Jiao Yan,Jing Ma,Kang Fang. Computing Text Semantic Similarity with Syntactic Network of Co-occurrence Distance[J]. 数据分析与知识发现, 2019, 3(12): 93-100.
[4] Wuxuan Jiang,Huixiang Xiong,Jiaxin Ye,Ning An. Creating Dynamic Tags for Social Networking Groups[J]. 数据分析与知识发现, 2019, 3(10): 98-109.
[5] Qian Xiaodong,Li Min. Identifying E-commerce User Types Based on Complex Network Overlapping Community[J]. 数据分析与知识发现, 2018, 2(6): 79-91.
[6] Chen Yunwei,Zhang Ruihong. Comparing on Community Detection Algorithms for Information Mining[J]. 数据分析与知识发现, 2018, 2(10): 84-94.
[7] Liu Bingyao,Ma Jing,Li Xiaofeng. Topic Representation Model Based on “Feature Dimensionality Reduction”[J]. 数据分析与知识发现, 2017, 1(11): 53-61.
[8] Wu Jiang,Chen Jun,Zhang Jinfan. A Knowledge Supply-Demand Simulation System for Collaborative Innovation[J]. 现代图书情报技术, 2016, 32(9): 27-33.
[9] Ye Teng,Han Lichuan,Xing Chunxiao,Zhang Yan. Knowledge Dissemination Mechanism in Virtual Communities: Case Study Based on Complex Network Theory[J]. 现代图书情报技术, 2016, 32(7-8): 70-77.
[10] Lixin Xia,Ying Tan. Analysis and Visualization of the LOD Network Structure[J]. 现代图书情报技术, 2016, 32(1): 65-72.
[11] Yang Ning, Huang Feihu, Wen Yi, Chen Yunwei. An Opinion Evolution Model Based on the Behavior of Micro-blog Users[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[12] Du Kun, Liu Huailiang, Guo Lujie. Study on the Modified Method of Feature Weighting with Complex Networks[J]. 现代图书情报技术, 2015, 31(11): 26-32.
[13] Zhu Hou. Co-evolution of Social Networks and Public Opinion Considering the Effect of Trust and Authority[J]. 现代图书情报技术, 2015, 31(10): 50-57.
[14] He Yumei, Qi Jiayin, Liu Huili. The Study of Local-world Network Evolution Model Based on Microblog[J]. 现代图书情报技术, 2014, 30(5): 66-73.
[15] Tang Xiaobo, Xiao Lu. Research of Text Feature Extraction on Dependency Parsing Network[J]. 现代图书情报技术, 2014, 30(11): 31-37.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn