Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 25 Issue (7-8): 1-5    DOI: 10.11925/infotech.1003-3513.2009.07-08.01
article Current Issue | Archive | Adv Search |
Practice of Creating and Reasoning Science Ontology by Protégé
Hong Na1,2  Zhang Zhixiong1
1(National Science Library, Chinese Academy of Sciences, Beijing 100190, China)
2(Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
Download: PDF (696 KB)  
Export: BibTeX | EndNote (RIS)      

 After analyzing and using the Ontology editor Protégé, this paper chooses science individuals which extracting from Web content as analysis objects, and  tries out an experiment on creating science Ontology and reasoning on a simple relation. This paper also explains these methods and examples. Finally, it sums up some problems still existing in large scale Ontology storage and management.

Key wordsProtégé      Ontology      Individual      Reason     
Received: 31 March 2009      Published: 25 August 2009


Corresponding Authors: Hong Na     E-mail:
About author:: Hong Na,Zhang Zhixiong

Cite this article:

Hong Na,Zhang Zhixiong. Practice of Creating and Reasoning Science Ontology by Protégé. New Technology of Library and Information Service, 2009, 25(7-8): 1-5.

URL:     OR

[1] Protégé[EB/OL].[2009-03-01].
[2] Ettorre M, Pontieri P, Ruffolo M, et al. A Prototypal Environment for Collaborative Work Within a Research Organization[C]. In: Proceedings of the 14th International Workshop on Database and Expert Systems Applications,Ithaca,Greece.2003:274.
[3] Protégé-OWL API Programmer’s Guide[EB/OL].[2009-03-01].
[4] Using the Protégé-OWL Reasoner API [EB/OL].[2009-03-01].
[5] RacerPro[EB/OL].[2009-03-01].
[6] Jena 2 Inference Support[EB/OL].[2009-03-01].
[7] Lu J, Ma L,  Zhang L, et al.  SOR: A Practical System for Ontology Storage, Reasoning and Search[C]. In:Proceedings of the 33rd International Conference on Very Large Data Bases, Vienna, Austria.2007: 1402-1405.

[1] Wei Wu, Xie Xingzheng. The Determinants of Continuance Intention to Pay: Empirical Research from Online Knowledge Payment Users[J]. 数据分析与知识发现, 2020, 4(8): 119-129.
[2] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[3] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[4] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[5] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[6] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[7] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[8] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[9] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[10] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[11] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[12] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[13] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[14] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[15] Xia Lixin,Yang Jinqing,Cheng Xiufeng. Collecting Mobile Data Based on Content Awareness——An Empirical Study[J]. 数据分析与知识发现, 2017, 1(5): 82-93.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938