Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (5): 22-26    DOI: 10.11925/infotech.1003-3513.2006.05.06
Current Issue | Archive | Adv Search |
Ontology Driven Cross Language Information Retrieval
Wu Dan
 (Department of Information Management, Peking University, Beijing 100871,China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

This paper analyzes the problems of semantic disambiguation of cross language information retrieval, proposes that multilingual ontologies can improve the translation efficiency of cross language information retrieval and discusses two systems on it. Then the paper designs an Ontology-based cross language information retrieval model and describes the methods to realize it.

Key wordsOntology      Cross language information retrieval (CLIR)      Information retrieval (IR)      Multilingual Ontology     
Received: 18 January 2006      Published: 25 May 2006


Corresponding Authors: Wu Dan     E-mail:
About author:: Wu Dan

Cite this article:

Wu Dan . Ontology Driven Cross Language Information Retrieval. New Technology of Library and Information Service, 2006, 1(5): 22-26.

URL:     OR

1Studer R, Benjamins V R, Fensel D. Knowledge engineering: principles and methods. Dada Knowledge Engineering, 1998, 25 (1-2):161-197
2焦玉英. 信息检索进展. 北京:科学出版社,2003.72-90
3张俊林,曲为民等. 跨语言信息检索研究进展. 计算机科学,2004(7):16-19
4Mirna Adriani. Using Statistical Term Similarity for Sense Disambiguation in Cross-Language Information Retrieval. Information Retrieval, 2000,2(1): 69-80
5Qiu Y, Frei HP. Concept Based Query Expansion. Research and Development in Information Retrieval, 1993.160-169
6Ballestercs L, Croft WB. Phrasal translation and query expansion techniques for cross-language information retrieval. In: Belkin NJ, Narasimhalu AD and Willet P, Eds., Research and Development in Information Retrieval, 1997. 84-91
7Ballesteros L and Croft WB. Resolving ambiguity for cross-language retrieval. Proceedings of the 21st Annual Interrational ACM SIGIR Confeieue on research and Development in Information Retrieval, 1998. 64-71
8Piek Vossen. EuroWordNet: a multilingual database for information retrieval. the DELOS workshop on Cross-language Information Retrieval, March 5-7, 1997, Zurich. (Accessed Dec.15, 2005)
9知网. (Accessed Feb.19, 2006)
10Natalia V. Loukachevitch. Russian Language in Cross-Language Information Retrieval: Resources and Tools in Russia. (Accessed Dec.15, 2005)
11Cindor系统. (Accessed Dec.26, 2005)
12侯艳飞. 跨语言信息检索研究. 北京:北京大学,2003
13Jacques, Said and Gilles. Ontology-Based Multilingual Information Retrieval. (Accessed Dec.15, 2005)

[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[15] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938