Please wait a minute...
New Technology of Library and Information Service  2005, Vol. 21 Issue (5): 46-49    DOI: 10.11925/infotech.1003-3513.2005.05.11
Current Issue | Archive | Adv Search |
Development of Text Automatic Categorization Measurement Research.
Tan Jinbo   Li Yi   Yang Xiaojiang
(Department of Educational Technology, Nanjing Normal University, Nanjing 210097, China)
Download: PDF (0 KB)  
Export: BibTeX | EndNote (RIS)      

Text categorization is the foundation and core of text-mining, which has been a research focus of data-mining and Internet-mining in recent years. This article introduces domestic and foreign research situation on text categorization from the view of the nature and quantity. It analyzes the important factors affecting text categorization, and hope to find the common problem by evaluating summary of text categorization system and arithmetic. The goal of the article is to provide theory and fact for the optimization and improvement of text automatic categorization.

Key wordsAutomatic categorization      Evaluate      Feature selection     
Received: 03 December 2004      Published: 25 May 2005


Corresponding Authors: Tan Jinbo     E-mail:
About author:: Tan Jinbo,Li Yi,Yang Xiaojiang

Cite this article:

Tan Jinbo,Li Yi,Yang Xiaojiang. Development of Text Automatic Categorization Measurement Research.. New Technology of Library and Information Service, 2005, 21(5): 46-49.

URL:     OR

1Text retrieval conference. (Accessed Sep. 20,2004)
5Yang Y, Pedersen J O. A comparative study on feature selection in text categorization. 1997. (Accessed Sep. 10,2004)
8张东礼,汪东升,郑纬民.基于VSM 的中文文本分类系统的设计与实现.清华大学学报(自然科学版),2003(9):1288-1291
10Franca Debole,Fabrizio Sebastiani. Supervised Term Weighting for Automated Text Categorization. 2003.
Automated Text Categorization. 2003. (Accessed Sep. 10,2004)
13Yiming Yang, Xin Liu. A re-examination of text categorization methods. Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval,1999:42-49

[1] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[2] Jiaming Liang,Jie Zhao,Zhou Jianlong,Zhenning Dong. Detecting Collusive Fraudulent Online Transaction with Implicit User Behaviors[J]. 数据分析与知识发现, 2019, 3(5): 125-138.
[3] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[4] Zhanglu Tan,Zhaogang Wang,Han Hu. Study on a Method of Feature Classification Selection Based on χ2 Statistics[J]. 数据分析与知识发现, 2019, 3(2): 72-78.
[5] Wen Tingxin,Li Yangzi,Sun Jingshuang. Extracting Text Features with Improved Fruit Fly Optimization Algorithm[J]. 数据分析与知识发现, 2018, 2(5): 59-69.
[6] Li Zhipeng,Li Weizhong. Feature Selection Based on Modified QPSO Algorithm[J]. 数据分析与知识发现, 2017, 1(7): 82-89.
[7] Zhang Yue,Wang Dongbo,Zhu Danhao. Segmenting Chinese Words from Food Safety Emergencies[J]. 数据分析与知识发现, 2017, 1(2): 64-72.
[8] Li Xiangdong,Ruan Tao,Liu Kang. Automatic Classification of Documents from Wikipedia[J]. 数据分析与知识发现, 2017, 1(10): 43-52.
[9] Lu Yonghe,Chen Jinghuang. Optimizing Feature Selection Method for Text Classification with Shuffled Frog Leaping Algorithm[J]. 数据分析与知识发现, 2017, 1(1): 91-101.
[10] Liu Hongguang,Ma Shuanggang,Liu Guifeng. Classifying Chinese News Texts with Denoising Auto Encoder[J]. 现代图书情报技术, 2016, 32(6): 12-19.
[11] Meng Yuan,Wang Hongwei. Evaluating Online Reviews Based on Text Content Features[J]. 现代图书情报技术, 2016, 32(4): 40-47.
[12] Li Xiangdong, Ba Zhichao, Huang Li. Allocation and Multi-granularity[J]. 现代图书情报技术, 2015, 31(5): 42-49.
[13] Xu Dongdong, Wu Shaobo. An Improved TF-IDF Feature Selection Based on Categorical Description[J]. 现代图书情报技术, 2015, 31(3): 39-48.
[14] Tan Xueqing, Zhou Tong, Luo Lin. A Text Classification Algorithm Based on the Average Category Similarity[J]. 现代图书情报技术, 2014, 30(9): 66-73.
[15] Gu Xiaoxue, Zhang Chengzhi. Using Content and Tags for Web Text Clustering[J]. 现代图书情报技术, 2014, 30(11): 45-52.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938