Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. 29 Issue (7/8): 13-21
  数字图书馆 本期目录 | 过刊浏览 | 高级检索 |
吴振新1, 齐燕2,3, 付鸿鹄1, 刘超1,3, 李文燕1,3, 刘晓敏1,3, 王玉菊1
1. 中国科学院国家科学图书馆 北京 100190;
2. 中国科学院国家科学图书馆成都分馆 成都 610041;
3. 中国科学院大学 北京 100049
Infrastructure, Intelligence, Innovation:Driving the Data Science Agenda——A Comprehensive Review of IDCC2013
Wu Zhenxin1, Qi Yan2,3, Fu Honghu1, Liu Chao1,3, Li Wenyan1,3, Liu Xiaomin1,3, Wang Yuju1
1. National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
2. The Chengdu Branch of National Science Library, Chinese Academy of Sciences, Chengdu 610041, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF (531 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 系统而全面地回顾第8届数字保管国际会议(IDCC2103),围绕"基础设施、情报、创新:启动数据科学的研究历程"的主题,与会者对机构和国家层面的研究数据管理、知识库/数据存档库、云服务、教育和培训、机密性/开放性研究数据、格式/标识符、交叉学科数据、艺术与人文科学数据、格式/元数据、数据出版等主题进行详细、深入而广泛的介绍、分析和讨论,呈现该领域的一系列理论与实践方面的研究成果、现状及挑战等。
E-mail Alert
关键词 数字保管研究数据管理基础设施情报创新数据科学大数据    
Abstract:This paper reviews the 8th International Digital Curation Conference systematically and comprehensively, centring on the theme of the "Infrastructure, Intelligence, Innovation: Driving the Data Science Agenda", the conventioneers present, analyze and discuss the problems about the Institutional Research Data Management, National Perspectives in Research Data Management,Repositories/Data Archives, Cloud Services, Education & Training, Confidentiality/Open Research Data, Formats & Identifiers, Cross Disciplinary Data, Arts & Humanities Data, Formats/Metadata, Data Publication detailedly, deeply and extensively, which witness the research results, current status and challenges of the theoretical and practical aspects in this realm.
Key wordsDigital curation    Research data management    Infrastructure    Intelligence    Innovation    Data science    Big data
收稿日期: 2013-05-25      出版日期: 2013-09-02



通讯作者: 吴振新     E-mail:
吴振新, 齐燕, 付鸿鹄, 刘超, 李文燕, 刘晓敏, 王玉菊. 基础设施、情报、创新:启动数据科学的研究历程——IDCC2013会议综述[J]. 现代图书情报技术, 2013, 29(7/8): 13-21.
Wu Zhenxin, Qi Yan, Fu Honghu, Liu Chao, Li Wenyan, Liu Xiaomin, Wang Yuju. Infrastructure, Intelligence, Innovation:Driving the Data Science Agenda——A Comprehensive Review of IDCC2013. New Technology of Library and Information Service, 2013, 29(7/8): 13-21.
链接本文:      或
[1] IDCC 2013[EB/OL].[2013-04-20].
[2] Farquhar A. Digital Collections: New Challenges for Curation and New Opportunities for Data Driven Scholarship[EB/OL].[2013-04-20].
[3] Miller P. Intelligence, Insight, and the Role of Scale: Data Stories from the Business World[EB/OL].[2013-04-20]. ons/Paul_Miller_idcc13forweb.pdf.
[4] Pfeiffenberger H. From Sensor to Dissemination: Stewardship of Data in the Marine Sciences[EB/OL].[2013-04-20]. entations/0945PfeffIDCC2013.pdf.
[5] Lyon L. What is a Data Scientist?[EB/OL].[2013-04-20]. esentations/LyonIDCC13.pdf.
[6] Corti L. Are Data Curators Ever Data Scientists?[EB/OL].[2013-04-20].
[7] Edmunds S. Data Publisher[EB/OL].[2013-04-20]. ns/EdmundsIDCC13.pdf.
[8] Bennett F. Mastodon C: Big Data Done Better[EB/OL].[2013-04-20].
[9] Birney E. ELIXIR: A Bioinformatics Infrastructure[EB/OL].[2013-04-20].
[10] Beitz A. Growing an Institution's Research Data Management Capability Through Strategic Investments in Infrastructure[EB/OL].[2013-04-20].
[11] Bicarregui J. Building an Open Data Infrastructure for Research: Turning Policy into Practice[EB/OL].[2013-04-20]. ons/BicarreguiIDCC13.pdf.
[12] Cruse P. Building Services, Building Communities, Supporting Data Intensive Research[EB/OL].[2013-04-20]. ons/1145CruseIDCC2013.pdf.
[13] Thaney K. Making Research More Efficient[EB/OL].[2013-04-20].
[14] Pink C. Meeting the Data Management Compliance Challenge: Funder Expectations and Institutional Reality[EB/OL].[2013-04-20].
[15] Rice R. Implementing the Research Data Management Policy: University of Edinburgh Roadmap[EB/OL].[2013-04-20]. entations/RobinRiceIDCC2013UoERoadmap.pdf.
[16] Parsons T. Creating a Research Data Management Service[EB/OL].[2013-04-20].
[17] Rumsey S, Jefferies N. Challenges in Building an Institutional Research Data Catalogue[EB/OL].[2013-04-20].
[18] Wilson J. Towards a Unified University Infrastructure: The Data Management Roll-out at the University of Oxford[EB/OL].[2013-04-20].
[19] Groenewegen D, Treloar A. Data Management Practice in Australia – the ANDS Perspective[EB/OL].[2013-04-20]. ons/GroenewegenIDCC13.pdf.
[20] Halbert M. The Problematic Future of Research Data Management: Challenges, Opportunities, and Emerging Patterns Identified by the DataRes Project[EB/OL].[2013-04-20]. tIDCC13.pdf.
[21] Hodson S. Institutional Research Data Management Services: Progress and Challenges in the JISC Managing Research Data Programme[EB/OL].[2013-04-20]. 13.pdf.
[22] Pryor G. A Maturing Process of Engagement: Raising Data Capabilities in UK Higher Education[EB/OL].[2013-04-20]. esentations/GrahamPryorIDCC2013.pdf.
[23] Molloy L, Hodson S, Poschen M, et al. Gathering Evidence of Benefits: A Structured Approach from the Managing Research Data Programme[EB/OL].[2013-04-20].
[24] Weber N, Thomer A, Mayernik M, et al. The Product & Asset Specificity of Measuring Impact: Some Indicators of Data Use in a Research Data Archive[EB/OL].[2013-04-20]. ons/WeberIDCC13.pdf.
[25] Plale B, McDonald R H, Chandrasekar K, et al. SEAD Virtual Archive: Building a Federation of Institutional Repositories for Long-Term Data Preservation in Sustainability Science[EB/OL].[2013-04-20].
[26] Schumann N. The GESIS Data Archive for the Social Sciences: A Widely Recognised Data Archive on Its Way Towards a New Level of Trustworthiness[EB/OL].[2013-04-20]. humannGESISDataArchive.pdf.
[27] Yakel E, Faniel I M, Kriesberg A, et al. Trust in Digital Repositories[EB/OL].[2013-04-20]. berg_Yoon_IDCC82013.pdf.
[28] von Suchodoletz D, Rechert K, Valizada I. Emulation as a Service (EaaS) – Building Blocks of an Access Cloud Service[EB/OL].[2013-04-20].
[29] Rosenthal D S H, Vargas D L. Distributed Digital Preservation in the Cloud[EB/OL].[2013-04-20].
[30] Kelly K. Model Development for Scientific Data Curation Education[EB/OL].[2013-04-20].
[31] Carlson J, Johnston L, Westra B, et al. Developing an Understanding of Data Management Education: A Report from the Data Information Literacy Project[EB/OL].[2013-04-20]. ons/CarlsonIDCC13.pdf.
[32] Scott M, Boardman R, Reed P, et al. Research Data Management Education for Future Curators[EB/OL].[2013-04-20]. entations/MarkScottIDCC13.pdf.
[33] Smaele M. Data Intelligence Training for Library Staff[EB/OL].[2013-04-20].
[34] Lagoze C, Block W C, Williams J, et al. Data Management of Confidential Data[EB/OL].[2013-04-20].
[35] Peer L. Participant Confidentiality and Open Research Data[EB/OL].[2013-04-20]. ResearchData.pdf.
[36] Lyle J, Alter G. Archiving and Providing Access to Confidential Social Science Data[EB/OL].[2013-04-20].
[37] Corti L. Enabling Access to UK Social Science Data across the Disclosure Spectrum[EB/OL].[2013-04-20].
[38] Bortoli S, Bouquet P, Bazzanella B. Can Persistent Identifiers Be also Cool[EB/OL].[2013-04-20]. 13.pdf.
[39] Spencer R. The Skeleton Test Corpus[EB/OL].[2013-04-20].
[40] Austin T. Prenormative Research into Standard Messaging Formats for Engineering Materials Data[EB/OL].[2013-04-20]. esentations/AustinIDCC13.pdf.
[41] Bicarregui J, Gray N, Henderson R, et al. Data Management and Preservation Planning for Big Science[EB/OL].[2013-04-20].
[42] Wittenberg P. EUDAT: A New Cross-Disciplinary Data Infrastructure for Science[EB/OL].[2013-04-20].
[43] van den Heuvel H. The CLARIN-NL Data Curation Service: Bringing Data to the Foreground[EB/OL].[2013-04-20].
[44] Garrett L, Gramstadt M, Silva C. Here, KAPTUR this! Identifying and Selecting the Infrastructure Required to Support the Curation and Preservation of Visual Arts Research Data[EB/OL].[2013-04-20].
[45] Guy M, Donnelly M, Molloy L. Pinning It Down: Towards a Practical Definition of 'Research Data' for Creative Arts Institutions[EB/OL].[2013-04-20].
[46] Yarmey L, Baker K. Toward Standardization: A Participatory Framework for the Process of Developing Scientific Metadata Standards[EB/OL].[2013-04-20].
[47] Hoogerwerf M. Linking Data & Publications: Solving Multi-disciplinary Challenges for OpenAIREplus[EB/OL].[2013-04-20].
[48] Callaghan S, Murphy F, Tedds J, et al. Processes and Procedures for Data Publication: A Case Study in the Geosciences[EB/OL].[2013-04-20].
[49] Doorn P, Dillo I, Horik R. Lies, Damned Lies and Research Data: Can Data Sharing Prevent Data Fraud?[EB/OL].[2013-04-20].
[50] Hein P, Thyssen M. The Road to Wisdom[EB/OL].[2013-04-20].
[1] 单晓红,王春稳,刘晓燕,韩晟熙,杨娟. 开放式创新社区领先用户识别——知识基础观视角*[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] 宋若璇,钱力,杜宇. 基于科技论文中未来工作句集的学术创新构想话题自动生成方法研究*[J]. 数据分析与知识发现, 2021, 5(5): 10-20.
[3] 代冰,胡正银. 基于文献的知识发现新近研究综述 *[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[4] 常志军,钱力,谢靖,吴振新,张鹄,于倩倩,王颖,王永吉. 基于分布式技术的科技文献大数据平台的建设研究*[J]. 数据分析与知识发现, 2021, 5(3): 69-77.
[5] 王松, 杨洋, 刘新民. 基于图注意力网络的开放式创新社区用户创意潜在价值发现研究*[J]. 数据分析与知识发现, 2021, 5(11): 89-101.
[6] 陈仕吉, 邱均平, 余波. 基于Overlay图谱的图情领域大数据主题分析*[J]. 数据分析与知识发现, 2021, 5(10): 51-59.
[7] 关鹏,王曰芬,靳嘉林,傅柱. 专利合作视角下技术创新合作网络演化分析——以国内语音识别技术领域为例*[J]. 数据分析与知识发现, 2021, 5(1): 112-127.
[8] 赵宇翔,练靖雯. 数字人文视域下文化遗产众包研究综述*[J]. 数据分析与知识发现, 2021, 5(1): 36-55.
[9] 隗玲,李姝影,方曙. 技术路线图:方法及其应用综述*[J]. 数据分析与知识发现, 2020, 4(9): 1-14.
[10] 王建冬,于施洋. 构建国家经济大脑的实践探索与初步设想 *[J]. 数据分析与知识发现, 2020, 4(7): 2-17.
[11] 邱尔丽,何鸿魏,易成岐,李慧颖. 基于字符级CNN技术的公共政策网民支持度研究 *[J]. 数据分析与知识发现, 2020, 4(7): 28-37.
[12] 王建冬. 大数据在经济监测预测研究中的应用进展*[J]. 数据分析与知识发现, 2020, 4(1): 12-26.
[13] 孔贝贝,谢靖,钱力,常志军,吴振新. 科技大数据增值丰富化方法研究与工具研发 *[J]. 数据分析与知识发现, 2019, 3(7): 113-122.
[14] 董晓舟,陈信康. 电子折扣券弹性与经济效益的关系研究 ——一个基于电商平台大数据的混合模型[J]. 数据分析与知识发现, 2019, 3(6): 42-49.
[15] 陆泉,朱安琪,张霁月,陈静. 中文网络健康社区中的用户信息需求挖掘研究*——以求医网肿瘤板块数据为例[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
Full text



版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190