Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. 29 Issue (10): 1-7
  数字图书馆 本期目录 | 过刊浏览 | 高级检索 |
田野1,2, 祝忠明1, 刘树栋3
1. 中国科学院国家科学图书馆兰州分馆 兰州 730000;
2. 中国科学院大学 北京 100049;
3. 北京邮电大学计算机学院 北京 100876
Review of Recommendation System Based on Linked Data
Tian Ye1,2, Zhu Zhongming1, Liu Shudong3
1. The Lanzhou Branch of National Science Library, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
全文: PDF (718 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 从基于关联数据的推荐系统的提出背景入手,介绍关联数据在推荐系统中发挥的作用,全面梳理基于关联数据的推荐系统与传统推荐系统的异同点,帮助读者了解基于关联数据的推荐系统产生的原因及应用背景。按照推荐系统的一般分类方法,以详细介绍具体应用实例的方式,系统地分析与总结基于关联数据的推荐系统的主要方法。
E-mail Alert
关键词 关联数据本体语义网推荐系统    
Abstract:Firstly, this paper introduces the background and the effect of linked data in recommendation system, summarizes similarities and differences between the recommendation system based on linked data and the traditional recommendation system. This is to help readers understand the cause and application background of the recommendation system based on linked data. Secondly, this paper systematically analyses the main method of recommendation system based on linked data on basis of the general classification of recommendation system and detailed introduction of concrete application examples.
Key wordsLinked data    Ontology    Semantic Web    Recommendation system
收稿日期: 2013-07-08      出版日期: 2013-11-04
:  TP393  
通讯作者: 田野     E-mail:
田野, 祝忠明, 刘树栋. 基于关联数据的推荐系统综述[J]. 现代图书情报技术, 2013, 29(10): 1-7.
Tian Ye, Zhu Zhongming, Liu Shudong. Review of Recommendation System Based on Linked Data. New Technology of Library and Information Service, 2013, 29(10): 1-7.
链接本文:      或
[1] Burke R. Hybrid Recommender Systems: Survey and Experiments[J].User Modeling and User-adapted Interaction,2002,12(4):331-370.
[2] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6):734-749.
[3] Sarwar B, Karypis G, Konstan J, et al. Analysis of Recommendation Algorithms for E-commerce[C]. In: Proceedings of the 2nd ACM Conference on Electronic Commerce. New York, NY, USA: ACM, 2000:158-167.
[4] Sarwar B, Karypis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms[C].In: Proceedings of the 10th International Conference on World Wide Web. New York, NY, USA: ACM, 2001:285-295.
[5] Claypool M, Gokhale A, Miranda T,et al. Combining Content-based and Collaborative Filters in an Online Newspaper[C]. In: Proceedings of ACM SIGIR Workshop on Recommender Systems.1999.
[6] Good N, Schafer J B, Konstan J A, et al. Combining Collaborative Filtering with Personal Agents for Better Recommendations[C]. In: Proceedings of the 16th National Conference on Artificial Intelligence and the 11th Innovative Applications of Artificial Intelligence. Menlo Park, CA, USA: American Association for Artificial Intelligence, 1999:439-446.
[7] Sarwar B M, Konstan J A, Borchers A, et al. Using Filtering Agents to Improve Prediction Quality in the Grouplens Research Collaborative Filtering System[C]. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work. New York, NY, USA: ACM,1998:345-354.
[8] Koren Y,Bell R,Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer,2009,42(8):30-37.
[9] Ma H, King I, Lyu M R. Learning to Recommend with Social Trust Ensemble[C].In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2009.
[10] Adomavicius G,Tuzhilin A. Context-aware Recommender Systems[A].//Recommender Systems Handbook[M]. Springer, 2011:217-253.
[11] Adomavicius G, Tuzhilin A. Context-aware Recommender Systems[C].In: Proceedings of the 2008 ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2008:335-336.
[12] Passant A,Heitmann B,Hayes C. Using Linked Data to Build Recommender Systems[C].In: Proceedings of the 3rd ACM Conference on Recommender Systems. New York, NY,USA: ACM,2009.
[13] Di Noia T,Mirizzi R,Ostuni V C, et al. Exploiting the Web of Data in Model-based Recommender Systems[C]. In: Proceedings of the 6th ACM Conference on Recommender Systems. New York, USA: ACM, 2012:253-256.
[14] Apostolski V, Jovanoski L, Tranjanov D. Linked Data-based Social Bookmarking and Recommender System[C].In: Proceedings of ICT Innovations.2012:133-142.
[15] Policarpio S,Brunk S,Tummarello G. Implementation of a SPARQL Integrated Recommendation Engine for Linked Data with Hybrid Capabilities[C]. In: Proceedings of Artificial Intelligence Meets the Web of Data (AImWD) Workshop,at the European Conference on Artificial Intelligence (ECAI). 2012.
[16] Berners-Lee T. Linked Data-Design Issues[EB/OL].(2006-07-27).[2013-07-28].
[17] Jentzsch R C A.The Linking Open Data Cloud Diagram[EB/OL].[2013-05-10].
[18] Heitmann B,Hayes C.Using Linked Data to Build Open,Collaborative Recommender Systems[C]. In: Proceedings of AAAI Spring Symposium: Linked Data Meets Artificial Intelligence.2010.
[19] George T,Merugu S.A Scalable Collaborative Filtering Framework Based on Co-clustering[C]. In: Proceedings of the 5th IEEE International Conference on Data Mining.2005:625-628.
[20] Lémdani R, Polaillon G, Bennacer N,et al. A Semantic Similarity Measure for Recommender Systems[C].In: Proceedings of the 7th International Conference on Semantic Systems. New York, NY, USA: ACM,2011:183-186.
[21] Passant A. Dbrec―Music Recommendations Using DBpedia[C].In: Proceedings of the 9th International Semantic Web Conference(ISWC).2010:209-224.
[22] Passant A. Measuring Semantic Distance on Linking Data and Using It for Resources Recommendations[C]. In: Proceedings of AAAI Spring Symposium: Linked Data Meets Artificial Intelligence.2010.
[23] Hu W, Yan K, Jia C, et al. SmartMusic: An Online Music Recommendation System Based on Semantic Web Technology[EB/OL]. [2013-07-28].
[24] Meymandpour R,Davis J G.Recommendations Using Linked Data[C].In: Proceedings of the 5th Ph.D. Workshop on Information and Knowledge.2012:75-82.
[25] Danica D,Milan S,Philippe L.Linked Data-based Concept Recommendation: Comparison of Different Methods in Open Innovation Scenario[C].In: Proceedings of the 9th Extended Semantic Web Conference.2012:24-38.
[26] Di Noia T,Mirizzi R,Ostuni V C,et al. Linked Open Data to Support Content-based Recommender Systems[C].In: Proceedings of the 8th International Conference on Semantic Systems. 2012:1-8.
[27] Baumann S,Schirru R.Using Linked Open Data for Novel Artist Recommendations[C].In: Proceedings of the 13th International Society for Music Information Retrieval Conference.2012.
[28] Ostuni V C, Di Noia T, Mirizzi R, et al. Cinemappy: A Context-aware Mobile App for Movie Recommendations Boosted by DBpedia[C].In: Proceedings of the SeRSy. 2012:37-48.
[29] Yang R, Hu W, Qu Y Z. Using Semantic Technology to Improve Recommendation Systems Based on Slope One[C]. In: Proceedings of Semantic Web and Web Science.Springer,2013:11-23.
[30] 许海玲,吴潇,李晓东,等.互联网推荐系统比较研究[J]. 软件学报,2009,20(2):350-362.(Xu Hailing, Wu Xiao, Li Xiaodong,et al. Comparison Study of Internet Recommendation System[J].Journal of Software,2009,20(2):350-362.)
[31] Fernández-Tobías I,Cantador I,Kaminskas M, et al. A Generic Semantic-based Framework for Cross-domain Recommendation[C].In:Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems.2011:25-32.
[32] Gordea S,Lindley A,Graf R. Computing Recommendations for Long Term Data Accessibility Basing on Open Knowledge and Linked Data[EB/OL].[2013-08-02].
[1] 盛姝, 黄奇, 杨洋, 解绮雯, 秦新国. HL7 FHIR框架下中国医疗领域信息交换研究与解决方案[J]. 数据分析与知识发现, 2021, 5(11): 13-28.
[2] 于硕,Hayat Dino Bedru,储新倍,袁宇渊,万良田,夏锋. 科学发现偶然性研究综述[J]. 数据分析与知识发现, 2021, 5(1): 16-35.
[3] 邵琦,牟冬梅,王萍,靳春妍. 基于语义的突发公共卫生事件网络舆情主题发现研究*[J]. 数据分析与知识发现, 2020, 4(9): 68-80.
[4] 曾桢,李纲,毛进,陈璟浩. 区域公共安全数据治理与业务领域本体研究*[J]. 数据分析与知识发现, 2020, 4(9): 41-55.
[5] 杨恒,王思丽,祝忠明,刘巍,王楠. 基于并行协同过滤算法的领域知识推荐模型研究*[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[6] 温彦,马立健,曾庆田,郭文艳. 基于地理信息偏好修正和社交关系偏好隐式分析的POI推荐 *[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[7] 焦富森,李树青. 基于物品质量和用户评分修正的协同过滤推荐算法 *[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[8] 强韶华,罗云鹿,李玉鹏,吴鹏. 基于RBR和CBR的金融事件本体推理研究 *[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[9] 邓诗琦,洪亮. 面向智能应用的领域本体构建研究*——以反电话诈骗领域为例[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[10] 张怡文,张臣坤,杨安桔,计成睿,岳丽华. 基于条件型游走的四部图推荐方法*[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[11] 高广尚. 用户画像构建方法研究综述*[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[12] 王颖,钱力,谢靖,常志军,孔贝贝. 科技大数据知识图谱构建模型与方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[13] 何有世, 何述芳. 基于领域本体的产品网络口碑信息多层次细粒度情感挖掘*[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[14] 唐慧慧, 王昊, 张紫玄, 王雪颖. 基于汉字标注的中文历史事件名抽取研究*[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[15] 庞贝贝, 苟娟琼, 穆文歆. 面向高校学生深度辅导领域的主题建模和主题上下位关系识别研究*[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
Full text



版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190