Please wait a minute...
Advanced Search
数据分析与知识发现  2019, Vol. 3 Issue (5): 11-18     https://doi.org/10.11925/infotech.2096-3467.2018.0871
  专题 本期目录 | 过刊浏览 | 高级检索 |
引入新闻短文本的个股走势预测模型
张梦吉(),杜婉钰,郑楠
东北财经大学管理科学与工程学院 大连 116025
Predicting Stock Trends Based on News Events
Mengji Zhang(),Wanyu Du,Nan Zheng
School of Management Science and Engineering, Dongbei University of Finance and Economics, Dalian 116025, China
全文: PDF (1577 KB)   HTML ( 17
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】结合深度学习, 分析股市数值数据和财经新闻, 提高股票涨跌预测准确率。【方法】建立基于事件的新闻分类模型, 使用多输入的循环神经网络建立基于新闻事件、资金流向和公司财务的个股走势预测模型, 提升股票预测准确率。【结果】引入新闻文本后模型预测准确率进一步提升, 其中, 采矿业准确率达到76.22%, 医药制造业准确率达到77.36%。【局限】未验证新闻标题与新闻文章对股价影响程度的差异, 且新闻事件的分类是基于一年内的新闻数据集进行人工划分, 数据集不具备完整性和代表性。【结论】引入新闻事件作为股票预测模型的特征之一, 能够提升预测的准确率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张梦吉
杜婉钰
郑楠
关键词 个股走势预测深度学习文本挖掘    
Abstract

[Objective] This paper tries to predict stock trends with the help of deep learning models, financial data and related news events. [Methods] First, we built a classification model for news events. Then, we used the recurrent neural networks to construct a forecasting model for stock trends based on news, capital flows and corporate financial reports. [Results] The prediction accuracy was improved by the proposed model (76.22% and 77.36% for the mining and pharmaceutical manufacturing industries). [Limitations] We did not examine the different impacts of news headlines and full-texts on stock market. We only chose news events from the past one year, which needs to be expanded. [Conclusions] News events could improve the accuracy of predicting stock trends.

Key wordsStock Trend Forecast    Deep Learning    Text Mining
收稿日期: 2018-08-06      出版日期: 2019-07-03
引用本文:   
张梦吉,杜婉钰,郑楠. 引入新闻短文本的个股走势预测模型[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events. Data Analysis and Knowledge Discovery, 2019, 3(5): 11-18.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2018.0871      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2019/V3/I5/11
[1] Birz G. Stale Economic News, Media and the Stock Market[J]. Journal of Economic Psychology, 2017, 61(3): 384-412. .
[2] Nassirtoussi A K, Aghabozorgi S, Wah T Y, et al.Text Mining of News-headlines for FOREX Market Prediction: A Multi-layer Dimension Reduction Algorithm with Semantics and Sentiment[J]. Expert Systems with Applications, 2015, 42(1): 306-324.
[3] Li X, Wang C, Dong J, et al.Improving Stock Market Prediction by Integrating both Market News and Stock Prices[C]// Proceedings of International Conference on Database and Expert Systems Applications. Springer Berlin Heidelberg, 2011: 279-293.
[4] Schumaker R P, Chen H. Textual Analysis of Stock Market Prediction Using Breaking Financial News: The AZFinText System[J]. ACM Transactions on Information Systems, 2009, 27(2): Article No. 12.
[5] Tetlock P C, Macskassy S.More than Words: Quantifying Language to Measure Firms’ Fundamentals[J]. The Journal of Finance, 2008, 63(3): 1437-1467.
[6] 孔翔宇, 毕秀春, 张曙光. 财经新闻与股市预测——基于数据挖掘技术的实证分析[J]. 数理统计与管理, 2016, 35(2):215-224.
[6] (Kong Xiangyu, Bi Xiuchun, Zhang Shuguang.Financial News and Stock Market Forecast——An Empirical Analysis Based on Data Mining Technology[J]. Mathematical Statistics and Management, 2016, 35(2): 215-224.)
[7] Basu S.Investment Performance of Common Stocks in Relation to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis[J]. Journal of Finance, 1977, 32(3): 663-682.
[8] Fama E F, French K R.Size and Book-to-Market Factors in Earnings and Returns[J]. Journal of Finance, 2012, 50(1): 131-155.
[9] Kim Y. Convolutional Neural Networks for Sentence Classification[OL]. arXiv Preprint, arXiv: 1408.5882, 2014.
[10] Multi-Class-Text-Classification-CNN-RNN [OL]. [2017-02-17]..
[11] Gers F A, Schmidhuber J, Cummins F.Learning to Forget: Continual Prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471.
[12] Sundermeyer M, Ney H, Schlüter R.LSTM Neural Networks for Language Modeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(3): 517-529.
[13] Leven S.The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting[J]. Neural Networks, 1996, 9(3): 543-544.
[14] 张建波, 李振. 行业因素对我国股票价格波动率的影响研究[J]. 山东大学学报: 哲学社会科学版, 2014(1): 88-93.
[14] (Zhang Jianbo, Li Zhen.The Study of the Industry Factors on the Volatility of China’s Stock Price[J]. Journal of Shandong University: Philosophy and Social Sciences, 2014(1): 88-93.)
[15] Yu H, Chen R, Zhang G.A SVM Stock Selection Model within PCA[J]. Procedia Computer Science, 2014, 31: 406-412.
[16] Shynkevich Y, McGinnity T M, Coleman S A, et al. Forecasting Movements of Health-Care Stock Prices Based on Different Categories of News Articles Using Multiple Kernel Learning[J]. Decision Support Systems, 2016, 85(C): 74-83.
[1] 周泽聿,王昊,赵梓博,李跃艳,张小琴. 融合关联信息的GCN文本分类模型构建及其应用研究*[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[2] 赵丹宁,牟冬梅,白森. 基于深度学习的科技文献摘要结构要素自动抽取方法研究*[J]. 数据分析与知识发现, 2021, 5(7): 70-80.
[3] 徐月梅, 王子厚, 吴子歆. 一种基于CNN-BiLSTM多特征融合的股票走势预测模型*[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[4] 钟佳娃,刘巍,王思丽,杨恒. 文本情感分析方法及应用综述*[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[5] 黄名选,蒋曹清,卢守东. 基于词嵌入与扩展词交集的查询扩展*[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[6] 马莹雪,甘明鑫,肖克峻. 融合标签和内容信息的矩阵分解推荐方法*[J]. 数据分析与知识发现, 2021, 5(5): 71-82.
[7] 许光,任明,宋城宇. 西方媒体新闻中的中国经济形象提取*[J]. 数据分析与知识发现, 2021, 5(5): 30-40.
[8] 张国标,李洁. 融合多模态内容语义一致性的社交媒体虚假新闻检测*[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[9] 代冰,胡正银. 基于文献的知识发现新近研究综述 *[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[10] 胡昊天,吉晋锋,王东波,邓三鸿. 基于深度学习的食品安全事件实体一体化呈现平台构建*[J]. 数据分析与知识发现, 2021, 5(3): 12-24.
[11] 张琪,江川,纪有书,冯敏萱,李斌,许超,刘浏. 面向多领域先秦典籍的分词词性一体化自动标注模型构建*[J]. 数据分析与知识发现, 2021, 5(3): 2-11.
[12] 吕学强,罗艺雄,李家全,游新冬. 中文专利侵权检测研究综述*[J]. 数据分析与知识发现, 2021, 5(3): 60-68.
[13] 常城扬,王晓东,张胜磊. 基于深度学习方法对特定群体推特的动态政治情感极性分析*[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
[14] 冯勇,刘洋,徐红艳,王嵘冰,张永刚. 融合近邻评论的GRU商品推荐模型*[J]. 数据分析与知识发现, 2021, 5(3): 78-87.
[15] 成彬,施水才,都云程,肖诗斌. 基于融合词性的BiLSTM-CRF的期刊关键词抽取方法[J]. 数据分析与知识发现, 2021, 5(3): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn