Please wait a minute...
Advanced Search
数据分析与知识发现  2020, Vol. 4 Issue (2/3): 68-77     https://doi.org/10.11925/infotech.2096-3467.2019.0728
  专辑 本期目录 | 过刊浏览 | 高级检索 |
基于多头自注意力神经网络的购物篮推荐方法*
倪维健,郭浩宇,刘彤(),曾庆田
山东科技大学计算机学院 青岛 266510
Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks
Ni Weijian,Guo Haoyu,Liu Tong(),Zeng Qingtian
College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China
全文: PDF (1348 KB)   HTML ( 12
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 针对用户一次购买多件物品的场景,为用户推荐下一次可能购买的多件物品。【方法】 基于多头自注意力神经网络设计一种新的购物篮推荐方法,该方法使用多头自注意力机制捕捉购物篮中不同物品的关系以及融合物品属性信息,并使用具有注意力的循环神经网络建模购物篮序列信息。【结果】 实验结果表明,本文方法优于传统推荐方法和现有基于深度学习的推荐方法,特别是在TaoBao数据集上F1值提升2%。【局限】 本文方法仅提升了推荐结果的准确性,是否能够提升多样性还需进一步验证。【结论】 多头自注意力能够更好地对购物篮进行建模,进而提升购物篮推荐效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪维健
郭浩宇
刘彤
曾庆田
关键词 购物篮推荐深度神经网络多头自注意力物品属性    
Abstract

[Objective] This paper aims to predict online customers’ future purchases based on their previous shopping behaviors.[Methods] We proposed a new product recommendation approach based on multi-head self-attention neural networks. Our method captured the relationship and attributes of items checked out by specific customers.Finally, we generated the recommended lists using recurrent neural networks with attentions.[Results] We examined the proposed approach on three real-world data sets and yielded better F1 values than existing methods (2% higher).[Limitations] The diversity of the recommended lists needs more analysis.[Conclusions] The multi-head self-attention mechanism is an effective way to model shopping behaviors and create better recommendations for the consumers.

Key wordsNext Basket Recommendation    Deep Neural Network    Multi-Head Self-Attention    Item Attributes
收稿日期: 2019-06-20      出版日期: 2020-04-26
ZTFLH:  TP391  
基金资助:*本文系国家自然科学基金项目“面向用户群组的结构化推荐技术及其应用研究”(61602278);国家自然科学基金项目“应急预案流程图谱自动建模方法及其在场景式诊断中的应用”的研究成果之一(71704096)
通讯作者: 刘彤     E-mail: liu_tongtong@foxmail.com
引用本文:   
倪维健,郭浩宇,刘彤,曾庆田. 基于多头自注意力神经网络的购物篮推荐方法*[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
Ni Weijian,Guo Haoyu,Liu Tong,Zeng Qingtian. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 68-77.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2019.0728      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2020/V4/I2/3/68
Fig.1  多头自注意力模型结构
Fig.2  基于多头自注意力的购物篮推荐模型结构
数据集 用户数量 物品数量 购物篮数量 物品属性数量
Ta-Feng 2 348 14 716 39 101 2 013
JingDong 16 891 17 718 250 996 10
TaoBao 1 235 11 623 16 937 1 619
Table 1  数据集基本信息(单位:个)
Model Precision Recall F1 Hit-Rate NDCG@5
TOP 0.0497 0.0698 0.0580 0.2172 0.0833
Item-CF 0.0272 0.0400 0.0324 0.1244 0.0431
NFM 0.0518 0.0728 0.0605 0.2432 0.0831
DREAM 0.0533 0.0781 0.0633 0.2322 0.0851
NAM 0.0599 0.0941 0.0732 0.2627 0.0925
ANAM 0.0600 0.0942 0.0733 0.2632 0.0925
本文方法 0.0624 0.0968 0.0759 0.2732 0.0940
Table 2  Ta-Feng数据集结果
Model Precision Recall F1 Hit-Rate NDCG@5
TOP 0.0140 0.0392 0.0206 0.0679 0.0270
Item-CF 0.0123 0.0341 0.0181 0.0584 0.0251
NFM 0.0337 0.0822 0.0478 0.1409 0.0633
DREAM 0.0213 0.0592 0.0314 0.0988 0.0413
NAM 0.0257 0.0678 0.0372 0.1150 0.0485
ANAM 0.0568 0.1530 0.0828 0.2294 0.1226
本文方法 0.0678 0.1859 0.0994 0.2620 0.1485
Table 3  JingDong数据集结果
Model Precision Recall F1 Hit-Rate NDCG@5
TOP 0.0011 0.0024 0.0015 0.0048 0.0025
Item-CF 0.0012 0.0034 0.0018 0.0056 0.0022
NFM 0.0074 0.0185 0.0106 0.0307 0.0136
DREAM 0.0020 0.0044 0.0028 0.0088 0.0038
NAM 0.0019 0.0042 0.0026 0.0080 0.0037
ANAM 0.0019 0.0046 0.0027 0.0088 0.0038
本文方法 0.0158 0.0477 0.0237 0.0704 0.0410
Table 4  TaoBao数据集结果
Model Precision Recall F1 Hit-Rate NDCG@5
-category-attention 0.0589 0.0935 0.0723 0.2629 0.0930
-category-transformer 0.0533 0.0746 0.0621 0.2317 0.0686
-multihead 0.0617 0.0961 0.0752 0.2687 0.0934
-attention 0.0601 0.0943 0.0734 0.2634 0.0787
-transformer 0.0556 0.0899 0.0687 0.2512 0.0836
完整网络 0.0624 0.0968 0.0759 0.2732 0.0940
Table 5  Ta-Feng数据集网络部分性能结果
Model Precision Recall F1 Hit-Rate NDCG@5
-category-attention 0.0428 0.1157 0.0625 0.1835 0.0919
-category-transformer 0.0559 0.1506 0.0816 0.2225 0.1232
-multihead 0.0665 0.1781 0.0969 0.2577 0.1480
-attention 0.0428 0.1223 0.0634 0.1820 0.0930
-transformer 0.0568 0.1539 0.0829 0.2304 0.1256
完整网络 0.0678 0.1859 0.0994 0.2620 0.1485
Table 6  JingDong数据集网络部分性能结果
Model Precision Recall F1 Hit-Rate NDCG@5
-category-attention 0.0080 0.0221 0.0118 0.0363 0.0178
-category-transformer 0.0046 0.0142 0.0070 0.0209 0.0101
-multihead 0.0171 0.0543 0.0260 0.0738 0.0450
-attention 0.0047 0.0143 0.0071 0.0272 0.0138
-transformer 0.0055 0.0145 0.0080 0.0252 0.0176
完整网络 0.0158 0.0477 0.0237 0.0704 0.0410
Table 7  TaoBao数据集网络部分性能结果
Fig. 3  基于物品的自注意力权重可视化
Fig. 4  基于属性的自注意力权重可视化
[1] Hidasi B, Karatzoglou A, Baltrunas L , et al. Session-based Recommendations with Recurrent Neural Networks[OL]. arXiv Preprint, arXiv: 1511.06939.
[2] Hidasi B, Quadrana M, Karatzoglou A . Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations [C]// Proceedings of the 10th ACM Conference on Recommender Systems, Boston, USA. ACM, 2016: 241-248.
[3] Quadrana M, Karatzoglou A, Hidasi B , et al. Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks [C]// Proceedings of the 11th ACM Conference on Recommender Systems, Como, Italy. ACM, 2017: 130-137.
[4] Jannach D, Ludewig M . When Recurrent Neural Networks Meet the Neighborhood for Session-based Recommendation [C]// Proceedings of the 11th ACM Conference on Recommender Systems, Como, Italy. ACM, 2017: 306-310.
[5] De Montjoye Y A, Shmueli E, Wang S S . openPDS: Protecting the Privacy of Metadata Through Safe Answers[J]. PLoS One, 2014,9(7):e98790.
[6] Vescovi M, Perentis C, Leonardi C , et al. My Data Store: Toward User Awareness and Control on Personal Data [C]// Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, USA. ACM, 2014: 179-182.
[7] Hsu C N, Chung H H, Huang H S . Mining Skewed and Sparse Transaction Data for Personalized Shopping Recommendation[J]. Machine Learning, 2004,57(1-2):35-59.
[8] Lazcorreta E, Botella F, Fernández-Caballero A . Towards Personalized Recommendation by Two-step Modified Apriori Data Mining Algorithm[J]. Expert Systems with Applications, 2008,35(3):1422-1429.
[9] Guidotti R, Rossetti G, Pappalardo L , et al. Next Basket Prediction Using Recurring Sequential Patterns[OL]. arXiv Preprint, arXiv: 1702.07158.
[10] Chand C, Thakkar A, Ganatra A . Sequential Pattern Mining: Survey and Current Research Challenges[J]. International Journal of Soft Computing and Engineering, 2012,1(2):185-193.
[11] Rendle S, Freudenthaler C, Schmidt-Thieme L . Factorizing Personalized Markov Chains for Next-Basket Recommendation [C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820.
[12] Chen J, Wang C, Wang J . A Personalized Interest-forgetting Markov Model for Recommendations [C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. 2015.
[13] Wang P, Guo J, Lan Y , et al. Learning Hierarchical Representation Model for Next Basket Recommendation [C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile. ACM, 2015: 403-412.
[14] Yu F, Liu Q, Wu S , et al. A Dynamic Recurrent Model for Next Basket Recommendation [C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, Pisa, Italy. ACM, 2016: 729-732.
[15] Bai T, Nie J Y, Zhao W X , et al. An Attribute-aware Neural Attentive Model for Next Basket Recommendation [C]// Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA. ACM, 2018: 1201-1204.
[16] Vaswani A, Shazeer N, Parmar N , et al. Attention is All You Need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 5998-6008.
[17] Yu A W, Dohan D, Luong M T , et al. QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension[OL]. arXiv Preprint, arXiv: 1804.09541.
[18] Shen T, Zhou T, Long G , et al. DiSAN: Directional Self-Attention Network for RNN/CNN-Free Language Understanding [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. 2018.
[19] Hochreiter S, Schmidhuber J . Long Short-term Memory[J]. Neural Computation, 1997,9(8):1735-1780.
[20] Lee D D, Seung H S . Algorithms for Non-negative Matrix Factorization [C]// Proceedings of the 13th International Conference on Neural Information Processing Systems. 2001: 556-562.
[1] 冯文刚,姜兆菲璠. 基于民航旅客分级分类方法的差异化安检和旅客风险演化研究*[J]. 数据分析与知识发现, 2020, 4(12): 105-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn