Please wait a minute...
Advanced Search
数据分析与知识发现  2021, Vol. 5 Issue (11): 29-44     https://doi.org/10.11925/infotech.2096-3467.2021.0491
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
面向链接预测的知识图谱表示模型对比研究*
余传明(),张贞港,孔令格
中南财经政法大学信息与安全工程学院 武汉 430073
Comparing Knowledge Graph Representation Models for Link Prediction
Yu Chuanming(),Zhang Zhengang,Kong Lingge
School of Information and Safety Engineering, Zhongnan University of Economics and Law,Wuhan 430073, China
全文: PDF (1283 KB)   HTML ( 33
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 系统揭示知识图谱表示模型的内在原理和影响因素,探究其在特定任务上的效果差异。【方法】 面向链接预测任务,采用对比研究方法,比较基于翻译的知识图谱表示模型和基于语义匹配的知识图谱表示模型在FB15K、WN18、FB15K-237和WN18RR这4个数据集上的效果差异。【结果】 在Hits@1指标上,TuckER模型在WN18、FB15K-237、WN18RR数据集上取得最优值(分别为0.946 0、0.263 3和0.443 0);ComplEx模型在FB15K数据集上取得了最优值(0.731 4)。【局限】 由于篇幅限制,实证研究仅比较了知识图谱表示模型在链接预测任务和知识库问答上的效果,尚未比较在信息检索、推荐系统等任务上的差异。【结论】 基于翻译的知识图谱表示模型和基于语义匹配的知识图谱表示模型存在显著差异,知识图谱表示模型的得分函数、负采样和优化方法等模型结构,以及训练数据比例等因素对其在链接预测任务上的效果存在显著影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余传明
张贞港
孔令格
关键词 知识图谱表示学习深度学习链接预测    
Abstract

[Objective] This study systematically reviews the internal mechanism and influencing factors of knowledge graph representation models, aiming to investigate their impacts on specific tasks. [Methods] For the link prediction task, we compared the performance of translation-based and semantic matching-based knowledge graph representation models on FB15K, WN18, FB15K-237 and WN18RR datasets. [Results] With the Hits@1 indicator, the TuckER model generated the best value on WN18, FB15K-237 and WN18RR datasets (0.946 0, 0.263 3 and 0.443 0, respectively), while the ComplEx model yielded the highest value on FB15K dataset (0.731 4). [Limitations] We only compared the effects of knowledge graph representation model on the link prediction and knowledge base QA tasks. More research is needed to examine their performance on information retrieval, recommendation system and other tasks. [Conclusions] There are significant differences between the translation-based and the semantic matching-based knowledge graph representation models. The score function, negative sampling, and optimization method of the knowledge graph representation model, as well as the proportion of training data have significant impacts on the results of the link prediction.

Key wordsKnowledge Graph    Representation Learning    Deep Learning    Link Prediction
收稿日期: 2021-05-18      出版日期: 2021-12-23
ZTFLH:  TP391  
基金资助:*国家自然科学基金重大课题(71790612);国家自然科学基金面上项目(71974202)
通讯作者: 余传明,ORCID:0000-0001-7099-0853     E-mail: yucm@zuel.edu.cn
引用本文:   
余传明, 张贞港, 孔令格. 面向链接预测的知识图谱表示模型对比研究*[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction. Data Analysis and Knowledge Discovery, 2021, 5(11): 29-44.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2021.0491      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2021/V5/I11/29
Fig.1  基于知识图谱表示模型的链接预测框架
模型 得分函数 参数复杂度
TransE | | h + r - t | | P O ( n e k + n r k )
TransH | | ( h - r T hr ) + r - ( t - r T tr ) | | P O ( n e k + 2 n r k )
TransR | | hM r + r - t M r | | P O ( n e k + n r k + n r k 2 )
TransD | | h M rh + r - t M rt | | P O ( 2 n e k + 2 n r k )
DisMult < h , r , t > O ( n e k + n r k )
ComplEx < h , r , t > O ( 2 n e k + 2 n r k )
ConvE f ( vec ( f ( [ h , r ] × w ) W ) t O ( n e k + n r k )
HypER f ( vec ( h × ve c - 1 ( w r M ) ) W ) t O ( n e k + n r k )
TuckER < h , r , t , T > O ( n e k + n r k + k 3 )
Table 1  不同模型的得分函数和参数复杂度
统计项 FB15K FB15K-237 WN18 WN18RR
实体数 14 951 14 541 40 943 40 943
关系数 1 345 237 18 11
训练集 483 142 272 115 141 442 86 835
验证集 50 000 17 535 5 000 3 034
测试集 59 071 20 466 5 000 3 134
Table 2  数据集详细信息
模型 参数名 参数值
TransE 迭代次数 500
边距超参数
负采样方法
5.0
概率抽样
负采样数量
嵌入维度
25
200
TransH 迭代次数 500
边距超参数 4.0
负采样方法 概率抽样
负采样数量 25
嵌入维度 200
TransR 迭代次数 500
边距超参数 4.0
负采样方法 概率抽样
负采样数量 25
嵌入维度 200
TransD 迭代次数 500
边距超参数 4.0
负采样方法 概率抽样
负采样数量 25
嵌入维度 200
DistMult 迭代次数 500
Input Dropout 0.2
嵌入维度 200
标签平滑 0.1
ComplEx 迭代次数 500
Input Dropout 0.2
嵌入维度 200
标签平滑 0.1
ConvE 迭代次数 500
Input Dropout 0.2
Hidden Dropout 0.2
Feature Map Dropout 0.2
嵌入维度 200
标签平滑 0.1
HypER 迭代次数 500
Input Dropout 0.2
Hidden Dropout 0.2
Feature Map Dropout 0.2
嵌入维度 200
标签平滑 0.1
TuckER 迭代次数 500
Input Dropout 0.3
Hidden Dropout1 0.4
Hidden Dropout2 0.5
嵌入维度 200
标签平滑 0.1
Table 3  模型参数设置
模型 FB15K WN18
Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR
TransE 0.378 3 0.604 1 0.738 1 0.512 5 0.241 9 0.932 4 0.948 6 0.586 8
TransH 0.365 2 0.634 9 0.766 2 0.519 8 0.059 8 0.916 1 0.935 9 0.485 8
TransR 0.425 1 0.703 3 0.807 6 0.579 6 0.366 9 0.911 9 0.930 5 0.637 9
TransD 0.400 5 0.651 0 0.777 2 0.544 6 0.241 3 0.922 5 0.942 0 0.580 4
DistMult 0.706 6 0.814 4 0.877 7 0.770 4 0.848 8 0.942 5 0.953 2 0.896 3
ComplEx 0.731 4 0.820 0 0.875 8 0.784 5 0.941 2 0.949 1 0.956 0 0.946 2
TuckER 0.686 1 0.819 0 0.888 9 0.762 5 0.946 0 0.952 8 0.956 8 0.950 1
ConvE 0.561 7 0.721 8 0.827 2 0.658 0 0.940 9 0.947 0 0.955 0 0.945 4
HypER 0.659 0 0.793 6 0.868 3 0.737 3 0.945 4 0.952 2 0.957 6 0.949 6
Table 4  知识图谱表示模型获取表示在FB15K和WN18数据集上的效果
模型 FB15K-237 WN18RR
Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR
TransE 0.189 9 0.325 5 0.472 7 0.285 9 0.045 9 0.353 7 0.503 7 0.220 7
TransH 0.190 9 0.332 9 0.492 5 0.291 5 0.049 1 0.368 1 0.502 9 0.225 5
TransR 0.216 1 0.354 2 0.510 3 0.314 5 0.046 9 0.397 6 0.507 0 0.234 8
TransD 0.181 0 0.325 2 0.486 7 0.284 1 0.037 5 0.366 9 0.508 1 0.219 1
DistMult 0.216 6 0.329 4 0.474 1 0.301 0 0.396 1 0.451 5 0.515 5 0.434 3
ComplEx 0.213 5 0.325 0 0.470 5 0.297 8 0.411 3 0.463 9 0.534 1 0.449 5
TuckER 0.263 3 0.389 6 0.539 0 0.355 3 0.443 0 0.482 0 0.526 0 0.470 0
ConvE 0.225 6 0.344 8 0.492 1 0.314 2 0.393 3 0.439 7 0.499 0 0.427 7
HypER 0.249 8 0.376 0 0.519 7 0.340 3 0.428 7 0.471 8 0.520 7 0.458 9
Table 5  知识图谱表示模型获取表示在FB15K-237和WN18RR数据集上的效果
Fig.2  维度对基于翻译的知识图谱表示模型效果的影响
Fig.3  维度对基于语义匹配的知识图谱表示模型效果的影响
Fig.4  负采样方法和数量对TransE模型效果的影响
Fig.5  负采样方法和数量对TransH模型效果的影响
Fig.6  负采样方法和数量对TransR模型效果的影响
Fig.7  负采样方法和数量对TransD模型效果的影响
Fig.8  随机失活对知识图谱表示模型效果的影响
Fig.9  标签平滑对知识图谱表示模型效果的影响
Fig.10  动态新增实体对知识图谱表示模型效果的影响
Fig.11  训练数据比例对于基于翻译的知识图谱表示模型的效果影响
Fig.12  训练数据比例对于基于语义匹配的知识图谱表示模型的效果影响
数据集 模型 准确率/%
Simple Questions No_emb 41.20
TransE 74.63
TransH 73.33
TransR 73.37
TransD 73.21
DistMult 25.65
ComplEx 46.47
TuckER 73.25
ConvE 67.56
HypER 70.41
Table 6  知识图谱表示模型在知识库问答任务的效果对比
[1] Bollacker K, Cook R, Tufts P. Freebase: A Shared Database of Structured General Human Knowledge[C]// Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2007: 1962-1963.
[2] Bizer C, Lehmann J, Kobilarov G, et al. DBpedia- A Crystallization Point for the Web of Data[J]. Journal of Web Semantics, 2009, 7(3):154-165.
doi: 10.1016/j.websem.2009.07.002
[3] WMF. Wikidata[EB/OL]. [2019-11-11]. https://www.wikidata.org/wiki/Wikidata:Main_Page.
[4] Suchanek F M, Kasneci G, Weikum G. YAGO: A Large Ontology from Wikipedia and WordNet[J]. Journal of Web Semantics, 2008, 6(3):203-217.
doi: 10.1016/j.websem.2008.06.001
[5] Zhang Y Z, Liu K, He S Z, et al. Question Answering over Knowledge Base with Neural Attention Combining Global Knowledge Information[OL]. arXiv Preprint, arXiv: 1606.00979.
[6] Yang B S, Mitchell T. Leveraging Knowledge Bases in LSTMs for Improving Machine Reading[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). 2017: 1436-1446.
[7] Almousa M, Benlamri R, Khoury R. A Novel Word Sense Disambiguation Approach Using WordNet Knowledge Graph [OL]. arXiv Preprint, arXiv: 2101.02875.
[8] 阮小芸, 廖健斌, 李祥, 等. 基于人才知识图谱推理的强化学习可解释推荐研究[J]. 数据分析与知识发现, 2021, 5(6):36-50.
[8] (Ruan Xiaoyun, Liao Jianbin, Li Xiang, et al. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. Data Analysis and Knowledge Discovery, 2021, 5(6):36-50.)
[9] Bellman R E. Dynamic Programming[M]. Dover Publications, Incorporated, 2003.
[10] 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2):247-261.
[10] (Liu Zhiyuan, Sun Maosong, Lin Yankai, et al. Knowledge Representation Learning: A Review[J]. Journal of Computer Research and Development, 2016, 53(2):247-261.)
[11] 余传明, 王曼怡, 林虹君, 等. 基于深度学习的词汇表示模型对比研究[J]. 数据分析与知识发现, 2020, 4(8):28-40.
[11] (Yu Chuanming, Wang Manyi, Lin Hongjun, et al. A Comparative Study of Word Representation Models Based on Deep Learning[J]. Data Analysis and Knowledge Discovery, 2020, 4(8):28-40.)
[12] Bordes A, Usunier N, Garcia-Duran A, et al. Translating Embeddings for Modeling Multi-relational Data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2013: 2787-2795.
[13] Ruffinelli D, Broscheit S, Gemulla R. You Can Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings[C]// Proceedings of the International Conference on Learning Representations. Addis Ababa: ICLR, 2020.
[14] Wang Z, Zhang J W, Feng J L, et al. Knowledge Graph Embedding by Translating on Hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2014: 1112-1119.
[15] Lin Y K, Liu Z Y, Zhu M S, et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2015:2181-2187.
[16] Ji G L, He S Z, Xu L H, et al. Knowledge Graph Embedding via Dynamic Mapping Matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL Press, 2015: 687-696.
[17] Yang B S, Yih W T, He X D, et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases[OL]. arXiv Preprint, arXiv: 1412.6575.
[18] Trouillon T, Welbl J, Riedel S, et al. Complex Embeddings for Simple Link Prediction[C]// Proceedings of the International Conference on Machine Learning, New York, USA: ICML, 2016:2071-2080.
[19] Dettmers T, Minervini P, Stenetorp P, et al. Convolutional 2D Knowledge Graph Embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2018:1811-1818.
[20] Balažević I, Allen C, Hospedales T M, et al. Hypernetwork Knowledge Graph Embeddings[C]// Proceedings of the 2019 Conference in Artificial Neural Networks and Machine Learning: Workshop and Special Sessions. 2019:553-565.
[21] Balažević I, Allen C, Hospedales T M. Tucker: Tensor Factorization for Knowledge Graph Completion[OL]. arXiv Preprint, arXiv: 1901.09590.
[22] Mai G C, Janowicz K, Cai L, et al. SE‐KGE: A Location‐Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting[J]. Transactions in GIS, 2020, 24(3):623-655.
doi: 10.1111/tgis.v24.3
[23] Kumar S, Jat S, Saxena K, et al. Zero-Shot Word Sense Disambiguation Using Sense Definition Embeddings[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy:ACL, 2019: 5670-5681.
[24] Li C, Peng X T, Zhang S H, et al. Modeling Relation Paths for Knowledge Base Completion via Joint Adversarial Training[J]. Knowledge-Based Systems, 2020, 201-202:105865.
doi: 10.1016/j.knosys.2020.105865
[25] He L R, Liu B, Li G X, et al. Knowledge Base Completion by Variational Bayesian Neural Tensor Decomposition[J]. Cognitive Computation, 2018, 10(6):1075-1084.
doi: 10.1007/s12559-018-9565-x
[26] Wang H B, Jiang S C, Yu Z T. Modeling of Complex Internal Logic for Knowledge Base Completion[J]. Applied Intelligence, 2020, 50(10):3336-3349.
doi: 10.1007/s10489-020-01734-z
[27] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606.
[27] (Xu Zenglin, Sheng Yongpan, He Lirong, et al. Review on Knowledge Graph Techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606.)
[28] Ren F L, Li J C, Zhang H H, et al. Knowledge Graph Embedding with Atrous Convolution and Residual Learning[C]// Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain: ACM, 2020: 1532-1543.
[29] Choi S J, Song H J, Park S B. An Approach to Knowledge Base Completion by a Committee-Based Knowledge Graph Embedding[J]. Applied Sciences, 2020, 10(8):2651.
doi: 10.3390/app10082651
[30] Zhang M, Geng G H, Zeng S, et al. Knowledge Graph Completion for the Chinese Text of Cultural Relics Based on Bidirectional Encoder Representations from Transformers with Entity-Type Information[J]. Entropy, 2020, 22(10):1168.
doi: 10.3390/e22101168
[31] Wang Q, de Ji Y, Hao Y S, et al. GRL: Knowledge Graph Completion with GAN-Based Reinforcement Learning[J]. Knowledge-Based Systems, 2020, 209:106421.
doi: 10.1016/j.knosys.2020.106421
[32] Liu F F, Shen Y, Zhang T N, et al. Entity-Related Paths Modeling for Knowledge Base Completion[J]. Frontiers of Computer Science, 2020, 14(5):145311.
doi: 10.1007/s11704-019-8264-4
[33] Huang X, Zhang J Y, Li D C, et al. Knowledge Graph Embedding Based Question Answering[C]// Proceedings of the 12th International Conference on Web Search and Data Mining. Melbourne, VIC, Australia: ACM, 2019: 105-112.
[34] Bordes A, Usunier N, Chopra S, et al. Large-Scale Simple Question Answering with Memory Networks[OL]. arXiv Preprint, arXiv: 1506.02075.
[35] 安波, 韩先培, 孙乐. 融合知识表示的知识库问答系统[J]. 中国科学: 信息科学, 2018, 48(11):1521-1532.
[35] (An Bo, Han Xianpei, Sun Le. Knowledge-Representation-Enhanced Question-Answering System[J]. Scientia Sinica (Informationis), 2018, 48(11):1521-1532.)
[36] Saxena A, Tripathi A, Talukdar P. Improving Multi-hop Question Answering over Knowledge Graphs Using Knowledge Base Embeddings[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle: ACL, 2020: 4498-4507.
[37] Chen J D, Hu Y Z, Liu J P, et al. Deep Short Text Classification with Knowledge Powered Attention[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019, 33(1):6252-6259.
[38] Wang H, Zhang F, Xie X, et al. DKN: Deep Knowledge-Aware Network for News Recommendation[OL]. arXiv Preprint, arXiv: 1801.08284.
[39] Miller G A. WordNet: Alexical Database for English[J]. Communications of the ACM, 1995, 38(11):39-41.
[40] Kumar S, Jat S, Saxena K, et al. Zero-Shot Word Sense Disambiguation Using Sense Definition Embeddings[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019:5670-5681.
[41] 余传明, 王峰, 安璐. 基于深度学习的领域知识对齐模型研究:知识图谱视角[J]. 情报学报, 2019, 38(6):641-654.
[41] (Yu Chuanming, Wang Feng, An Lu. Research on the Domain Knowledge Alignment Model Based on Deep Learning: The Knowledge Graph Perspective[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(6):641-654.)
[42] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[C]// Proceedings of the International Conference on Learning Representations. New York:ACM, 2013:1156-1165.
[43] Toutanova K, Chen D Q. Observed Versus Latent Features for Knowledge Base and Text Inference[C]// Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Beijing, China: ACL, 2015: 57-66.
[44] Akrami F, Saeef M S, Zhang Q H, et al. Realistic Re-evaluation of Knowledge Graph Completion Methods: An Experimental Study[C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. Oregon, USA: ACM, 2020:1995-2010.
[45] 余传明, 王峰, 张贞港, 等. 基于表示学习的知识库问答模型研究[J]. 科技情报研究, 2021, 3(1):56-70.
[45] (Yu Chuanming, Wang Feng, Zhang Zhen’gang, et al. Research on Knowledge Graph Question Answering Model Based on Representation Learning[J]. Scientific Information Research, 2021, 3(1):56-70.)
[1] 周泽聿,王昊,赵梓博,李跃艳,张小琴. 融合关联信息的GCN文本分类模型构建及其应用研究*[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[2] 周阳,李学俊,王冬磊,陈方,彭莉娟. 炸药配方设计知识图谱的构建与可视分析方法研究*[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[3] 赵丹宁,牟冬梅,白森. 基于深度学习的科技文献摘要结构要素自动抽取方法研究*[J]. 数据分析与知识发现, 2021, 5(7): 70-80.
[4] 沈科杰, 黄焕婷, 化柏林. 基于公开履历数据的人物知识图谱构建*[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[5] 徐月梅, 王子厚, 吴子歆. 一种基于CNN-BiLSTM多特征融合的股票走势预测模型*[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[6] 黄名选,蒋曹清,卢守东. 基于词嵌入与扩展词交集的查询扩展*[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[7] 钟佳娃,刘巍,王思丽,杨恒. 文本情感分析方法及应用综述*[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[8] 阮小芸,廖健斌,李祥,杨阳,李岱峰. 基于人才知识图谱推理的强化学习可解释推荐研究*[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[9] 陈文杰,文奕,杨宁. 基于节点向量表示的模糊重叠社区划分算法*[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[10] 马莹雪,甘明鑫,肖克峻. 融合标签和内容信息的矩阵分解推荐方法*[J]. 数据分析与知识发现, 2021, 5(5): 71-82.
[11] 张国标,李洁. 融合多模态内容语义一致性的社交媒体虚假新闻检测*[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[12] 李贺,刘嘉宇,李世钰,吴迪,金帅岐. 基于疾病知识图谱的自动问答系统优化研究*[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[13] 代冰,胡正银. 基于文献的知识发现新近研究综述 *[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[14] 张鑫,文奕,许海云. 一种融合表示学习与主题表征的作者合作预测模型*[J]. 数据分析与知识发现, 2021, 5(3): 88-100.
[15] 常城扬,王晓东,张胜磊. 基于深度学习方法对特定群体推特的动态政治情感极性分析*[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn