Please wait a minute...
Advanced Search
数据分析与知识发现  2022, Vol. 6 Issue (7): 99-106     https://doi.org/10.11925/infotech.2096-3467.2022.0040
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种融合法律知识的相似案例匹配模型*
郑洁1,黄辉2,秦永彬2()
1贵阳职业技术学院信息科学系 贵阳 550081
2贵州大学计算机科学与技术学院 贵阳 550025
Matching Similar Cases with Legal Knowledge Fusion
Zheng Jie1,Huang Hui2,Qin Yongbin2()
1Department of Information Science, Guiyang Vocational and Technical College, Guiyang 550081, China
2College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
全文: PDF (999 KB)   HTML ( 20
输出: BibTeX | EndNote (RIS)      
摘要 

目的】构建融合法律知识的相似案例匹配模型,提升相似案例匹配任务准确率。【方法】首先将法律知识与案情文本拼接,让模型同时学习法律知识和文本信息的特征;其次,使用LSTM网络对文本进行分段建模,增强模型所能容纳的文本长度;最后,结合三元组损失和基于对抗的对比损失共同训练模型,增强模型的鲁棒性。【结果】本文模型能够极大地提升相似案例匹配任务的准确率,相比BERT基线模型提升7.07个百分点。【局限】 模型使用更长的文本序列进行匹配,相比其他模型更加耗时。【结论】本文模型融合法律先验知识,具有更强的匹配效果和泛化能力,有助于辅助法律专业人员进行相似案例检索。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑洁
黄辉
秦永彬
关键词 案例匹配BERT法律知识分段建模三元组损失    
Abstract

[Objective] This paper constructs a model to match similar cases with integrated legal knowledge, aiming to improve the accuracy of case matching. [Methods] First, we concatenated the legal knowledge with the case texts, which helped the model learn characteristics of legal knowledge and text information simultaneously. Then, we used the LSTM network to model text segmentally, and increased the length of the accommodated texts. Finally, we used triplet loss and adversarial-based contrastive loss to jointly train the model and enhanced its robustness. [Results] The proposed model significantly improved the accuracy of similar case matching, which is 7.07% higher than the baseline BERT model. [Limitations] We used longer text sequences for matching, which is more time consuming than other models. [Conclusions] The proposed model has stronger matching and generalization ability, which helps legal case retrieval.

Key wordsCase Matching    BERT    Legal Knowledge    Segmented Modelling    Triplet Loss
收稿日期: 2022-01-13      出版日期: 2022-03-01
ZTFLH:  TP391  
基金资助:*国家自然科学基金项目的研究成果之一(62066008)
通讯作者: 秦永彬,ORCID: 0000-0002-1960-8628     E-mail: ybqin@foxmail.com
引用本文:   
郑洁, 黄辉, 秦永彬. 一种融合法律知识的相似案例匹配模型*[J]. 数据分析与知识发现, 2022, 6(7): 99-106.
Zheng Jie, Huang Hui, Qin Yongbin. Matching Similar Cases with Legal Knowledge Fusion. Data Analysis and Knowledge Discovery, 2022, 6(7): 99-106.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0040      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2022/V6/I7/99
Fig.1  融合法律知识的相似案例匹配模型架构
属性 属性值
出借人基本属性 法人,自然人,其他组织
借款人基本属性 法人,自然人,其他组织
借款用途 个人生活,企业生产经营,夫妻生活,违法犯罪,其他
借贷合意的凭据 微信、短信、电话等聊天记录,收据、收条,还款承诺,借款合同、借条、借据,担保,欠条,未知或模糊,其他
出借意图 正常出借、转贷牟利、其他
借款交付形式 银行出账,未出借,票据,授权支配特定资金账户,现金,网上电子汇款,网络贷款平台,未知或模糊,其他
担保类型 保证,无担保,抵押,质押
约定期内利率(换算成年利率) 24%(含)以下,24%(不含)~36%(含),36%(不含)以上,其他
约定计息方式 无利息,单利,复利,约定不明,其他
还款交付形式 银行转账,票据,现金,部分还款,网上电子汇款,未还款,未知或模糊,其他
Table 1  民间借贷要素属性
Fig.2  输入构造样例
Fig.3  文本长度分布
属性名称 参数值
最大句子长度 512
切分段数 2
迭代轮次 4
学习率 2e-5
单卡批次大小 4
梯度累积步数 4
优化器 AdamW
权重衰减指数 0.01
Table 2  参数设置
模型 准确率/%
验证集 测试集
Baseline[1] CNN 62.27 69.53
LSTM 62.00 68.00
BERT 61.93 67.32
Team[1] 11.2 yuan(ensemble) 66.73 72.07
backward(ensemble) 67.73 71.81
AlphaCourt(ensemble) 70.07 72.66
Ours BERT(single) 68.73 72.72
MS-BERT(single) 68.51 73.24
MS-BERT(ensemble) 70.10 74.39
Table 3  模型性能对比
模型 准确率/%
验证集 测试集
BERT+Triplet 63.93 68.50
BERT+Triplet+CL 64.34 69.09
BERT+Triplet+Multi 65.95 70.71
BERT+Triplet+Feature 65.86 70.64
BERT+Triplet+Feature+Multi 68.47 72.07
BERT+Triplet+Feature+Multi+CL 68.73 72.72
MS-BERT+Triplet+Feature+Multi+CL 68.51 73.24
Table 4  消融实验结果
[1] Xiao C J, Zhong H X, Guo Z P, et al. CAIL2019-SCM: A Dataset of Similar Case Matching in Legal Domain[OL]. arXiv Preprint, arXiv:1911.08962.
[2] Devlin J, Chang M W, Lee K, et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding[OL]. arXiv Preprint, arXiv:1810.04805.
[3] Schroff F, Kalenichenko D, Philbin J. FaceNet: A Unified Embedding for Face Recognition and Clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015: 815-823.
[4] Robertson S, Zaragoza H. The Probabilistic Relevance Framework: BM25 and Beyond[J]. Foundations and Trends® in Information Retrieval, 2009, 3(4): 333-389.
[5] 黄名选, 卢守东, 徐辉. 基于加权关联模式挖掘与规则后件扩展的跨语言信息检索[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[5] ( Huang Mingxuan, Lu Shoudong, Xu Hui. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. Data Analysis and Knowledge Discovery, 2019, 3(9): 77-87.)
[6] Mikolov T, Yih W, Zweig G. Linguistic Regularities in Continuous Space Word Representations[C]// Proceedings of NAACL-HLT 2013. Association for Computational Linguistics, 2013: 746-751.
[7] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[8] Pennington J, Socher R, Manning C. GloVe: Global Vectors for Word Representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2014: 1532-1543.
[9] Li B H, Zhou H, He J X, et al. On the Sentence Embeddings from Pre-Trained Language Models[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2020: 9119-9130.
[10] Su J L, Cao J R, Liu W J, et al. Whitening Sentence Representations for Better Semantics and Faster Retrieval[OL]. arXiv Preprint, arXiv: 2103.15316.
[11] Gao T Y, Yao X C, Chen D Q. SimCSE: Simple Contrastive Learning of Sentence Embeddings[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2021: 6894-6910.
[12] Shen Y L, He X D, Gao J F, et al. Learning Semantic Representations Using Convolutional Neural Networks for Web Search[C]// Proceedings of the 23rd International Conference on World Wide Web. 2014: 373-374.
[13] Shen Y L, He X D, Gao J F, et al. A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval[C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. 2014: 101-110.
[14] Chen Q, Zhu X D, Ling Z H, et al. Enhanced LSTM for Natural Language Inference[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2017: 1657-1668.
[15] Wang Z G, Hamza W, Florian R. Bilateral Multi-Perspective Matching for Natural Language Sentences[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017: 4144-4150.
[16] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[OL]. arXiv Preprint, arXiv:1706.03762.
[17] Chen H J, Cai D, Dai W, et al. Charge-Based Prison Term Prediction with Deep Gating Network[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Association for Computational Linguistics, 2019: 6362-6367.
[18] Tran V le Nguyen M, Satoh K. Building Legal Case Retrieval Systems with Lexical Matching and Summarization Using a Pre-Trained Phrase Scoring Model[C]// Proceedings of the 17th International Conference on Artificial Intelligence and Law. 2019: 275-282.
[19] 李佳敏, 刘兴波, 聂秀山, 等. 三元组深度哈希学习的司法案例相似匹配方法[J]. 智能系统学报, 2020, 15(6): 1147-1153.
[19] ( Li Jiamin, Liu Xingbo, Nie Xiushan, et al. Triplet Deep Hashing Learning for Judicial Case Similarity Matching Method[J]. CAAI Transactions on Intelligent Systems, 2020, 15(6): 1147-1153.)
[20] Jing L L, Tian Y L. Self-Supervised Visual Feature Learning with Deep Neural Networks: A Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058.
doi: 10.1109/TPAMI.2020.2992393
[21] Miyato T, Dai A M, Goodfellow I. Adversarial Training Methods for Semi-Supervised Text Classification[OL]. arXiv Preprint, arXiv: 1605.07725.
[22] Zhong H, Zhang Z, Liu Z, et al. Open Chinese Language Pre-Trained Model Zoo[R]. 2019.
[1] 吴江, 刘涛, 刘洋. 在线社区用户画像及自我呈现主题挖掘——以网易云音乐社区为例*[J]. 数据分析与知识发现, 2022, 6(7): 56-69.
[2] 潘慧萍, 李宝安, 张乐, 吕学强. 基于多特征融合的政府工作报告关键词提取研究*[J]. 数据分析与知识发现, 2022, 6(5): 54-63.
[3] 肖悦珺, 李红莲, 张乐, 吕学强, 游新冬. 特征融合的中文专利文本分类方法研究*[J]. 数据分析与知识发现, 2022, 6(4): 49-59.
[4] 杨林, 黄晓硕, 王嘉阳, 丁玲玲, 李子孝, 李姣. 基于BERT-TextCNN的临床试验疾病亚型识别研究*[J]. 数据分析与知识发现, 2022, 6(4): 69-81.
[5] 郭航程, 何彦青, 兰天, 吴振峰, 董诚. 基于Paragraph-BERT-CRF的科技论文摘要语步功能信息识别方法研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 298-307.
[6] 张云秋, 汪洋, 李博诚. 基于RoBERTa-wwm动态融合模型的中文电子病历命名实体识别*[J]. 数据分析与知识发现, 2022, 6(2/3): 242-250.
[7] 王永生, 王昊, 虞为, 周泽聿. 融合结构和内容的方志文本人物关系抽取方法*[J]. 数据分析与知识发现, 2022, 6(2/3): 318-328.
[8] 谢星雨, 余本功. 基于MFFMB的电商评论文本分类研究*[J]. 数据分析与知识发现, 2022, 6(1): 101-112.
[9] 周泽聿,王昊,赵梓博,李跃艳,张小琴. 融合关联信息的GCN文本分类模型构建及其应用研究*[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[10] 陈杰,马静,李晓峰. 融合预训练模型文本特征的短文本分类方法*[J]. 数据分析与知识发现, 2021, 5(9): 21-30.
[11] 马江微, 吕学强, 游新冬, 肖刚, 韩君妹. 融合BERT与关系位置特征的军事领域关系抽取方法*[J]. 数据分析与知识发现, 2021, 5(8): 1-12.
[12] 李文娜, 张智雄. 基于联合语义表示的不同知识库中的实体对齐方法研究*[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[13] 王昊, 林克柔, 孟镇, 李心蕾. 文本表示及其特征生成对法律判决书中多类型实体识别的影响分析[J]. 数据分析与知识发现, 2021, 5(7): 10-25.
[14] 喻雪寒, 何琳, 徐健. 基于RoBERTa-CRF的古文历史事件抽取方法研究*[J]. 数据分析与知识发现, 2021, 5(7): 26-35.
[15] 陆泉, 何超, 陈静, 田敏, 刘婷. 基于两阶段迁移学习的多标签分类模型研究*[J]. 数据分析与知识发现, 2021, 5(7): 91-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn